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1 Problem 1

1.1 Part a

We must first find the intersection nearest the y-axis of the curve y = f(x) with the nega-
tive x-axis. In order to do so, we solve the equation

0 =
a3

4
− a2

3
− a

2
+ 3 cos a. (1)

Solving numerically, we obtain a ∼ −1.37312, and we find, also working numerically, that
the area of the region R ∫ 0

a
f(x) dx ∼ 2.90309. (2)

1.2 Part b

Using the method of washers, we find that the required volume is

π

∫ 0

a

(
[(f(x)− (−2)]2 − [0− (−2)]2

)
dx ∼ 59.36140, (3)

where we have again integrated numerically.
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1.3 Part c

f ′(x) = −1

2
− 2

3
x+

3

4
x2 − 3 sinx, so (4)

f ′(0) = −1

2
. (5)

Thus, an equation for the line tangent to the curve y = f(x) at the point (0, 3) is y = 3−x/2.
Solving numerically, we find that this line also meets the the curve at (b, f(b)), where
f(b) = 3− b/2, or b ∼ 3.38987. The required integral is therefore∫ b

0

[
3− 1

2
x− f(x)

]
dx ∼ 6.98200 (6)

Note: Evaluation is not required. Numerical integration gives the result shown.

2 Problem 2

2.1 Part a

The graph of f ′ is decreasing on the interval (1.7, 1.9), so f is concave downward on that
interval.

2.2 Part b

The equation f ′(x) = 0 has a root at c =
√
π, or c ∼ 1.77245. Moreover, for values of x

sufficiently close to x = c, f ′(x) > 0 when x < c and f ′(x) < 0 when c < x. By the First
Derivative Test, f has a local maximum at x = c. There are two other points in the interval
[0, 3] where f ′(x) = 0, but neither of these points can be a local maximum, again by the
First Derivative Test.

2.3 Part c

The line tangent to the graph of f at x = 2 has equation y = y0 + m(x − 2), where
y0 = f(2) ∼ −0.45902 and m = f ′(2) = e−1/2 sin 4 and (by the Fundamental Theorem of
Calculus)

y0 = 5 +

∫ 2

0
e−x/4 sinx2 dx. (7)

2



Carrying out the integration numerically, we find that y0 ∼ 5.62343. The required equa-
tion is therefore, approximately,

y = 5.62343− 0.45902(x− 2). (8)

3 Problem 3

3.1 Part a

If y = ax2, then y′ = 2ax, so x = 0 gives both y = 0 and y′ = 0, so that condition (i) is
satisfied. However, if x = 4, then 1 = y′ = 8a, by condition (ii), so that a = 1/8. But
then, using the other part of condition (ii), we find that 1 = y = (4)2/8 = 2, which is not
possible. The curve y = ax2 therefore can’t satisfy condition (ii) for any choice of a.

3.2 Part b

Let g(x) = cx3 − 1
16x

2. Then condition (i) requires that

1 = g(4) = 64c− 1, (9)

so that c = 1/32. Taking this value for c, we have

g(x) =
1

32
x3 − 1

16
x2; (10)

g′(x) =
3

32
x2 − 1

8
x; (11)

g′(4) =
3

32
· 42 − 1

8
· 4 =

3

2
− 1

2
= 1. (12)

Thus, g(x) =
1

32
x3 − 1

16
x satisfies condtion (ii).

3.3 Part c

If

g(x) =
1

32
x3 − 1

16
x =

1

16

(
1

2
x3 − x2

)
, (13)
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then

g′(x) =
1

16

(
3

2
x2 − 2x

)
=

x

32
(3x− 4). (14)

On the interval (0, 4/3), x > 0 while (3x−4) < 0. Consequently, f ′(x) < 0 on (0, 3/4), and
it follows that f cannot be increasing on (0, 4).

3.4 Part d

Let h(x) = xn/k, where k is a nonzero constant and n is a positive integer. If h meets
condition (ii), then 1 = h(4) = 4n/k, while 1 = h′(4) = n4n−1/k, too. Thus,

1 =
k

k
=

4n

n4n−1
, (15)

so that n = 4. But if n = 4 and 1 = 44/k, then k = 44 = 256. Thus, condition (ii), in
conjunction with h(x) = xn/k, forces h(x) = x4/256. From h(x) = x4/256, condition (i),
h(0) = 0 = h′(0) is immediate. Also, h′(x) = x3/64 > 0 for all x > 0, and this means that
h is increasing between x = 0 and x = 4. So condition (iii) is met.

4 Problem 4

4.1 Part a

The point (22, f(22)) lies at the midpoint of the segment whose endpoints are (20, 15) and
(24, 3), and whose slope is (15 − 3)/(20 − 24) = −3. The segment is part of the tangent
line to the curve y = f(x) at the point (22, f(22)). Thus, f ′(22) = −3 calories per minute
per minute.

4.2 Part b

The function f is increasing only on the intervals [0, 4] and [12, 16]. On the latter interval,
its rate of increase is

15− 9

16− 12
=

3

2
calories per minute per minute. (16)
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When 0 ≤ t ≤ 4, we have

f ′(t) = −3

4
t2 + 3t, and (17)

f ′′(t) = −3

2
t+ 3. (18)

Then f ′′(t) = 0 when t = 2; f ′′(t) > 0 when 0 < t < 2, and f ′′(t) < 0 when 2 < t < 4.
Thus, f ′ is an increasing function on the interval [0, 2] and a decreasing function on the
interval [2, 4]. By the First Derivative Test, f ′ has a relative maximum at x = 2. The value
of this maximum is f ′(2) = 3, and this relative maximum must be an absolute maximum
for the interval [0, 4]. This is larger than f ′(t) when 12 < t < 16, so the maximal value of
f ′(t), i.e. the maximal rate of increase for the rate at which calories are burned is 3 calories
per minute per minute at time t = 2.

4.3 Part c

The total number of calories burned over the time interval 6 ≤ t ≤ 18 is
∫ 18
6 f(t) dt.

We compute the areas of the relevant rectangles and the relevant trapezoid, and we find
that ∫ 18

6
f(t) dt = 6 · 9 + 4 · 15 + 9

2
+ 2 · 15 = 132 calories. (19)

4.4 Part d

It is required that

1

18− 6

∫ 18

6
[f(t) + c] dt = 15. (20)

But

1

18− 6

∫ 18

6
[f(t) + c] dt =

1

12

∫ 18

6
f(t) dt+

1

12

∫ 18

6
c dt (21)

=
1

12
· 132 + 1

12
ct

∣∣∣∣18
6

(22)

= 11 + c, (23)

and this means that 15 = 11 + c, so that c = 4.
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5 Problem 5

5.1 Part a

See Figure 1.
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Figure 1: Problem 5, Part a

5.2 Part b

If y ≡ c is a solution, then y′ ≡ 0. But y′ = (y − 1)2 cosπx. It follows that y ≡ 1 is the
required constant solution.

6



5.3 Part c

If y = f(x), with f(1) = 0, is a solution of y′ = (y − 1)2 cosπx, then

f ′(x) = [f(x)− 1]2 cosπx; (24)
f ′(x)

[f(x)− 1]2
= cosπx; (25)∫ x

1

f ′(ξ)

[f(ξ)− 1]2
dξ =

∫ x

1
cosπξ dξ; (26)

1

1− f(ξ)

∣∣∣∣x
1

=
1

π
sinπξ

∣∣∣∣x
1

; (27)

1

1− f(x)
− 1

1− f(1)
=

1

π
sinπx; (28)

1

1− f(x)
= 1 +

1

π
sinπx; (29)

f(x) =
sinπx

π + sinπx
. (30)

6 Problem 6

6.1 Part a

The integral
∫ 60
30 |v(t)| dt gives the total distance that the car travels during the interval

30 ≤ t ≤ 60. By the Trapezoid Rule, we have∫ 60

30
|v(t)| dt ∼ 14 + 10

2
· 5 + 10 + 0

2
· 15 + 0 + 10

2
· 10 = 185 feet/second. (31)

6.2 Part b

The integral
∫ 30
0 a(t) dt gives the change in the car’s velocity during the time interval 0 ≤

t ≤ 30.∫ 30

0
a(t) dt =

∫ 30

0
v′(t) dt = v(30)− v(0) = (−14)− (−20) = 6 feet/seccond. (32)
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6.3 Part c

v(0) = −20, while v(60) = 10, so v(0) < −5 < v(60). We are given that v is continous on
[0, 60], so the Intermediate Value Theorem guarantees the existence of a time t0 ∈ (0, 60)
such that v(t0) = −5.

Note: Continuity of the derivative is not needed here. Derivatives have the Intermediate
Value Property—though this is a fact not ordinarily known to students in a first or second
calculus course. Thus, I expect that a student who wants to make use of the IVP for
derivatives must explicitly state the fact.

6.4 Part d

v(0) = −20 and v(25) = −20. The functions v and v′ = a are given continuous on [0, 60],
which contains [0, 25]. In particular, v is therefore continuous on [0, 25] and differentiable
on (0, 25). By the Mean Value Theorem, there is a value t1 ∈ (0, 25) (and, a fortiori, in
(0, 60)) such that

a(t1) = v′(t1) =
v(25)− v(0)

25− 0
= 0. (33)
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