AP Calculus 2006 AB (Form B) FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

July 10, 2017

1 Problem 1

1.1 Part a

We must first find the intersection nearest the y-axis of the curve $y=f(x)$ with the negative x-axis. In order to do so, we solve the equation

$$
\begin{equation*}
0=\frac{a^{3}}{4}-\frac{a^{2}}{3}-\frac{a}{2}+3 \cos a . \tag{1}
\end{equation*}
$$

Solving numerically, we obtain $a \sim-1.37312$, and we find, also working numerically, that the area of the region R

$$
\begin{equation*}
\int_{a}^{0} f(x) d x \sim 2.90309 \tag{2}
\end{equation*}
$$

1.2 Part b

Using the method of washers, we find that the required volume is

$$
\begin{equation*}
\pi \int_{a}^{0}\left(\left[(f(x)-(-2)]^{2}-[0-(-2)]^{2}\right) d x \sim 59.36140\right. \tag{3}
\end{equation*}
$$

where we have again integrated numerically.

1.3 Part c

$$
\begin{align*}
f^{\prime}(x) & =-\frac{1}{2}-\frac{2}{3} x+\frac{3}{4} x^{2}-3 \sin x, \text { so } \tag{4}\\
f^{\prime}(0) & =-\frac{1}{2} \tag{5}
\end{align*}
$$

Thus, an equation for the line tangent to the curve $y=f(x)$ at the point $(0,3)$ is $y=3-x / 2$. Solving numerically, we find that this line also meets the the curve at $(b, f(b))$, where $f(b)=3-b / 2$, or $b \sim 3.38987$. The required integral is therefore

$$
\begin{equation*}
\int_{0}^{b}\left[3-\frac{1}{2} x-f(x)\right] d x \sim 6.98200 \tag{6}
\end{equation*}
$$

Note: Evaluation is not required. Numerical integration gives the result shown.

2 Problem 2

2.1 Part a

The graph of f^{\prime} is decreasing on the interval $(1.7,1.9)$, so f is concave downward on that interval.

2.2 Part b

The equation $f^{\prime}(x)=0$ has a root at $c=\sqrt{\pi}$, or $c \sim 1.77245$. Moreover, for values of x sufficiently close to $x=c, f^{\prime}(x)>0$ when $x<c$ and $f^{\prime}(x)<0$ when $c<x$. By the First Derivative Test, f has a local maximum at $x=c$. There are two other points in the interval $[0,3]$ where $f^{\prime}(x)=0$, but neither of these points can be a local maximum, again by the First Derivative Test.

2.3 Part c

The line tangent to the graph of f at $x=2$ has equation $y=y_{0}+m(x-2)$, where $y_{0}=f(2) \sim-0.45902$ and $m=f^{\prime}(2)=e^{-1 / 2} \sin 4$ and (by the Fundamental Theorem of Calculus)

$$
\begin{equation*}
y_{0}=5+\int_{0}^{2} e^{-x / 4} \sin x^{2} d x \tag{7}
\end{equation*}
$$

Carrying out the integration numerically, we find that $y_{0} \sim 5.62343$. The required equation is therefore, approximately,

$$
\begin{equation*}
y=5.62343-0.45902(x-2) . \tag{8}
\end{equation*}
$$

3 Problem 3

3.1 Part a

If $y=a x^{2}$, then $y^{\prime}=2 a x$, so $x=0$ gives both $y=0$ and $y^{\prime}=0$, so that condition (i) is satisfied. However, if $x=4$, then $1=y^{\prime}=8 a$, by condition (ii), so that $a=1 / 8$. But then, using the other part of condition (ii), we find that $1=y=(4)^{2} / 8=2$, which is not possible. The curve $y=a x^{2}$ therefore can't satisfy condition (ii) for any choice of a.

3.2 Part b

Let $g(x)=c x^{3}-\frac{1}{16} x^{2}$. Then condition (i) requires that

$$
\begin{equation*}
1=g(4)=64 c-1, \tag{9}
\end{equation*}
$$

so that $c=1 / 32$. Taking this value for c, we have

$$
\begin{align*}
g(x) & =\frac{1}{32} x^{3}-\frac{1}{16} x^{2} \tag{10}\\
g^{\prime}(x) & =\frac{3}{32} x^{2}-\frac{1}{8} x \tag{11}\\
g^{\prime}(4) & =\frac{3}{32} \cdot 4^{2}-\frac{1}{8} \cdot 4=\frac{3}{2}-\frac{1}{2}=1 . \tag{12}
\end{align*}
$$

Thus, $g(x)=\frac{1}{32} x^{3}-\frac{1}{16} x$ satisfies condtion (ii).

3.3 Part c

If

$$
\begin{equation*}
g(x)=\frac{1}{32} x^{3}-\frac{1}{16} x=\frac{1}{16}\left(\frac{1}{2} x^{3}-x^{2}\right), \tag{13}
\end{equation*}
$$

then

$$
\begin{equation*}
g^{\prime}(x)=\frac{1}{16}\left(\frac{3}{2} x^{2}-2 x\right)=\frac{x}{32}(3 x-4) . \tag{14}
\end{equation*}
$$

On the interval $(0,4 / 3), x>0$ while $(3 x-4)<0$. Consequently, $f^{\prime}(x)<0$ on $(0,3 / 4)$, and it follows that f cannot be increasing on $(0,4)$.

3.4 Part d

Let $h(x)=x^{n} / k$, where k is a nonzero constant and n is a positive integer. If h meets condition (ii), then $1=h(4)=4^{n} / k$, while $1=h^{\prime}(4)=n 4^{n-1} / k$, too. Thus,

$$
\begin{equation*}
1=\frac{k}{k}=\frac{4^{n}}{n 4^{n-1}}, \tag{15}
\end{equation*}
$$

so that $n=4$. But if $n=4$ and $1=4^{4} / k$, then $k=4^{4}=256$. Thus, condition (ii), in conjunction with $h(x)=x^{n} / k$, forces $h(x)=x^{4} / 256$. From $h(x)=x^{4} / 256$, condition (i), $h(0)=0=h^{\prime}(0)$ is immediate. Also, $h^{\prime}(x)=x^{3} / 64>0$ for all $x>0$, and this means that h is increasing between $x=0$ and $x=4$. So condition (iii) is met.

4 Problem 4

4.1 Part a

The point $(22, f(22))$ lies at the midpoint of the segment whose endpoints are $(20,15)$ and $(24,3)$, and whose slope is $(15-3) /(20-24)=-3$. The segment is part of the tangent line to the curve $y=f(x)$ at the point $(22, f(22))$. Thus, $f^{\prime}(22)=-3$ calories per minute per minute.

4.2 Part b

The function f is increasing only on the intervals $[0,4]$ and $[12,16]$. On the latter interval, its rate of increase is

$$
\begin{equation*}
\frac{15-9}{16-12}=\frac{3}{2} \text { calories per minute per minute. } \tag{16}
\end{equation*}
$$

When $0 \leq t \leq 4$, we have

$$
\begin{align*}
f^{\prime}(t) & =-\frac{3}{4} t^{2}+3 t, \text { and } \tag{17}\\
f^{\prime \prime}(t) & =-\frac{3}{2} t+3 . \tag{18}
\end{align*}
$$

Then $f^{\prime \prime}(t)=0$ when $t=2$; $f^{\prime \prime}(t)>0$ when $0<t<2$, and $f^{\prime \prime}(t)<0$ when $2<t<4$. Thus, f^{\prime} is an increasing function on the interval $[0,2]$ and a decreasing function on the interval $[2,4]$. By the First Derivative Test, f^{\prime} has a relative maximum at $x=2$. The value of this maximum is $f^{\prime}(2)=3$, and this relative maximum must be an absolute maximum for the interval $[0,4]$. This is larger than $f^{\prime}(t)$ when $12<t<16$, so the maximal value of $f^{\prime}(t)$, i.e. the maximal rate of increase for the rate at which calories are burned is 3 calories per minute per minute at time $t=2$.

4.3 Part c

The total number of calories burned over the time interval $6 \leq t \leq 18$ is $\int_{6}^{18} f(t) d t$. We compute the areas of the relevant rectangles and the relevant trapezoid, and we find that

$$
\begin{equation*}
\int_{6}^{18} f(t) d t=6 \cdot 9+4 \cdot \frac{15+9}{2}+2 \cdot 15=132 \text { calories. } \tag{19}
\end{equation*}
$$

4.4 Part d

It is required that

$$
\begin{equation*}
\frac{1}{18-6} \int_{6}^{18}[f(t)+c] d t=15 \tag{20}
\end{equation*}
$$

But

$$
\begin{align*}
\frac{1}{18-6} \int_{6}^{18}[f(t)+c] d t & =\frac{1}{12} \int_{6}^{18} f(t) d t+\frac{1}{12} \int_{6}^{18} c d t \tag{21}\\
& =\frac{1}{12} \cdot 132+\left.\frac{1}{12} c t\right|_{6} ^{18} \tag{22}\\
& =11+c, \tag{23}
\end{align*}
$$

and this means that $15=11+c$, so that $c=4$.

5 Problem 5

5.1 Part a

See Figure 1.

Figure 1: Problem 5, Part a

5.2 Part b

If $y \equiv c$ is a solution, then $y^{\prime} \equiv 0$. But $y^{\prime}=(y-1)^{2} \cos \pi x$. It follows that $y \equiv 1$ is the required constant solution.

5.3 Part c

If $y=f(x)$, with $f(1)=0$, is a solution of $y^{\prime}=(y-1)^{2} \cos \pi x$, then

$$
\begin{align*}
f^{\prime}(x) & =[f(x)-1]^{2} \cos \pi x \tag{24}\\
\frac{f^{\prime}(x)}{[f(x)-1]^{2}} & =\cos \pi x \tag{25}\\
\int_{1}^{x} \frac{f^{\prime}(\xi)}{[f(\xi)-1]^{2}} d \xi & =\int_{1}^{x} \cos \pi \xi d \xi \tag{26}\\
\left.\frac{1}{1-f(\xi)}\right|_{1} ^{x} & =\left.\frac{1}{\pi} \sin \pi \xi\right|_{1} ^{x} \tag{27}\\
\frac{1}{1-f(x)}-\frac{1}{1-f(1)} & =\frac{1}{\pi} \sin \pi x \tag{28}\\
\frac{1}{1-f(x)} & =1+\frac{1}{\pi} \sin \pi x \tag{29}\\
f(x) & =\frac{\sin \pi x}{\pi+\sin \pi x} \tag{30}
\end{align*}
$$

6 Problem 6

6.1 Part a

The integral $\int_{30}^{60}|v(t)| d t$ gives the total distance that the car travels during the interval $30 \leq t \leq 60$. By the Trapezoid Rule, we have

$$
\begin{equation*}
\int_{30}^{60}|v(t)| d t \sim \frac{14+10}{2} \cdot 5+\frac{10+0}{2} \cdot 15+\frac{0+10}{2} \cdot 10=185 \text { feet/second. } \tag{31}
\end{equation*}
$$

6.2 Part b

The integral $\int_{0}^{30} a(t) d t$ gives the change in the car's velocity during the time interval $0 \leq$ $t \leq 30$.

$$
\begin{equation*}
\int_{0}^{30} a(t) d t=\int_{0}^{30} v^{\prime}(t) d t=v(30)-v(0)=(-14)-(-20)=6 \text { feet } / \text { seccond } \tag{32}
\end{equation*}
$$

6.3 Part c

$v(0)=-20$, while $v(60)=10$, so $v(0)<-5<v(60)$. We are given that v is continous on $[0,60]$, so the Intermediate Value Theorem guarantees the existence of a time $t_{0} \in(0,60)$ such that $v\left(t_{0}\right)=-5$.
Note: Continuity of the derivative is not needed here. Derivatives have the Intermediate Value Property-though this is a fact not ordinarily known to students in a first or second calculus course. Thus, I expect that a student who wants to make use of the IVP for derivatives must explicitly state the fact.

6.4 Part d

$v(0)=-20$ and $v(25)=-20$. The functions v and $v^{\prime}=a$ are given continuous on $[0,60]$, which contains $[0,25]$. In particular, v is therefore continuous on [0,25] and differentiable on $(0,25)$. By the Mean Value Theorem, there is a value $t_{1} \in(0,25)$ (and, a fortiori, in $(0,60)$) such that

$$
\begin{equation*}
a\left(t_{1}\right)=v^{\prime}\left(t_{1}\right)=\frac{v(25)-v(0)}{25-0}=0 . \tag{33}
\end{equation*}
$$

