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1 Problem1

1.1 Parta

We must first find the intersection nearest the y-axis of the curve y = f(x) with the nega-
tive z-axis. In order to do so, we solve the equation
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Solving numerically, we obtain a ~ —1.37312, and we find, also working numerically, that
the area of the region R

/O f(x) dz ~ 2.90309. )

1.2 Partb

Using the method of washers, we find that the required volume is

0
77/ ([(f(:c) (=2 —[0— (—2)]2) dz ~ 59.36140, 3)

where we have again integrated numerically.



1.3 Partc

f’(x)z—%—%:c—k%ﬁ—?)sinx, SO 4)
f(0) = —%- (5)

Thus, an equation for the line tangent to the curve y = f(z) at the point (0, 3) isy = 3—z/2.
Solving numerically, we find that this line also meets the the curve at (b, f(b)), where
f(b) =3 —b/2, or b ~ 3.38987. The required integral is therefore

b
/ [3 - lx - f(w)] dx ~ 6.98200 (6)
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Note: Evaluation is not required. Numerical integration gives the result shown.

2 Problem 2

2.1 Parta

The graph of f’is decreasing on the interval (1.7,1.9), so f is concave downward on that
interval.

2.2 Partb

The equation f’(z) = 0 has a root at ¢ = /7, or ¢ ~ 1.77245. Moreover, for values of x
sufficiently close to z = ¢, f'(x) > 0 when z < cand f’(z) < 0 when ¢ < z. By the First
Derivative Test, f has a local maximum at 2 = c. There are two other points in the interval
[0, 3] where f’(z) = 0, but neither of these points can be a local maximum, again by the
First Derivative Test.

2.3 Partc

The line tangent to the graph of f at + = 2 has equation y = yo + m(z — 2), where
Yo = f(2) ~ —0.45902 and m = f'(2) = e~'/?sin4 and (by the Fundamental Theorem of
Calculus)

2
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Carrying out the integration numerically, we find that yp ~ 5.62343. The required equa-
tion is therefore, approximately,

y = 5.62343 — 0.45902(z — 2). 8)

3 Problem 3

3.1 Parta

If y = az?, then ¥ = 2ax, so z = 0 gives both y = 0 and ' = 0, so that condition (i) is
satisfied. However, if x = 4, then 1 = ¢’ = 8a, by condition (ii), so that « = 1/8. But
then, using the other part of condition (ii), we find that 1 = y = (4)?/8 = 2, which is not
possible. The curve y = az? therefore can’t satisfy condition (ii) for any choice of a.

3.2 Partb

Let g(z) = cz® — {22, Then condition (i) requires that

1=g(4) = 64c — 1, )

so that ¢ = 1/32. Taking this value for ¢, we have
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then

J(z) = % <;x2 - 2x> = ;—2(3:6 —4). (14)

On the interval (0,4/3), x > 0 while (3z —4) < 0. Consequently, f'(z) < 0 on (0,3/4), and
it follows that f cannot be increasing on (0, 4).

3.4 Partd

Let h(x) = 2™ /k, where k is a nonzero constant and n is a positive integer. If i meets
condition (ii), then 1 = h(4) = 4" /k, while 1 = 1/(4) = n4"~1/k, too. Thus,

k 4n

l=-=—— 1

k- n4n—1’ (15)
so that n = 4. Butif n = 4 and 1 = 4*/k, then k = 4* = 256. Thus, condition (ii), in
conjunction with h(z) = 2" /k, forces h(x) = x*/256. From h(z) = x*/256, condition (i),
h(0) = 0 = K/(0) is immediate. Also, h/(z) = x3/64 > 0 for all z > 0, and this means that
h is increasing between x = 0 and = = 4. So condition (iii) is met.

4 Problem4

4.1 Parta

The point (22, f(22)) lies at the midpoint of the segment whose endpoints are (20, 15) and
(24, 3), and whose slope is (15 — 3)/(20 — 24) = —3. The segment is part of the tangent
line to the curve y = f(z) at the point (22, f(22)). Thus, f'(22) = —3 calories per minute
per minute.

4.2 Partb

The function f is increasing only on the intervals [0, 4] and [12, 16]. On the latter interval,
its rate of increase is

15-9 _ § calories per minute per minute (16)
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When 0 < ¢t < 4, we have

f(t) = —%2 + 3¢, and (17)
() = —gt + 3. (18)

Then f”(t) = 0 whent = 2; f”(t) > O when 0 < ¢t < 2, and f”(t) < Owhen 2 < t < 4.
Thus, f’ is an increasing function on the interval [0,2] and a decreasing function on the
interval [2, 4]. By the First Derivative Test, f’ has a relative maximum at = 2. The value
of this maximum is f’(2) = 3, and this relative maximum must be an absolute maximum
for the interval [0,4]. This is larger than f/(¢) when 12 < ¢ < 16, so the maximal value of
f'(t), i.e. the maximal rate of increase for the rate at which calories are burned is 3 calories
per minute per minute at time ¢t = 2.

4.3 Partc

The total number of calories burned over the time interval 6 < ¢ < 18 is 618 f(t)dt.

We compute the areas of the relevant rectangles and the relevant trapezoid, and we find
that

18
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and this means that 15 = 11 + ¢, so that ¢ = 4.



5 Problem 5

5.1 Parta

See Figure 1.
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Figure 1: Problem 5, Part a

5.2 Partb

If y = cis a solution, then ¢/ = 0. Buty’ = (y — 1)?coswa. It follows that y = 1 is the
required constant solution.



5.3 Partc

If y = f(z), with f(1) = 0, is a solution of 3 = (y — 1)? cos 7z, then

(@) = [f(x) = 1] cos ma; (24)
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6 Problem 6

6.1 Parta

The integral f3600 |v(t)| dt gives the total distance that the car travels during the interval
30 <t < 60. By the Trapezoid Rule, we have

60 14+ 1 1 1
/ lu(t)| dt ~ —; 0. 5+ O; 0. 15 + 0+2 0. 10 = 185 feet/second. (31)
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6.2 Partb

The integral fOSO a(t) dt gives the change in the car’s velocity during the time interval 0 <
t < 30.

30 30
/ a(t)dt = / V' (t) dt = v(30) — v(0) = (—14) — (—20) = 6 feet/seccond. (32)
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6.3 Partc

v(0) = —20, while v(60) = 10, so v(0) < —5 < v(60). We are given that v is continous on
[0,60], so the Intermediate Value Theorem guarantees the existence of a time ¢y € (0, 60)
such that v(tg) = —5.

Note: Continuity of the derivative is not needed here. Derivatives have the Intermediate
Value Property—though this is a fact not ordinarily known to students in a first or second
calculus course. Thus, I expect that a student who wants to make use of the IVP for
derivatives must explicitly state the fact.

6.4 Partd

v(0) = —20 and v(25) = —20. The functions v and v" = a are given continuous on [0, 60],
which contains [0, 25]. In particular, v is therefore continuous on [0, 25] and differentiable
on (0,25). By the Mean Value Theorem, there is a value t; € (0,25) (and, a fortiori, in
(0,60)) such that

v(25) — v(0)

a(t1) =v'(t1) = “os 0 Y (33)



