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1 Problem1

1.1 Parta

The intersection points for the two curves have z-coordinates that are the solutions of the
equation /= = x/3, which are z = 0 and = = 9. Thus, the region R lies over the interval
[0,9], where \/z > /3. The required area is therefore
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1.2 Partb

Let V denote the desired volume.

By the method of washers:
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By the method of shells:
9 T
V_QW/O (f—g)(x—l—l)dw %)
Y 1 32 1 o
=27 /- —x+ ¥ — x| do (8)
0 3 3
2 1 2 1 .]1°
o |Ep32 L2 252 103
T [3;10 Gx + 530 9:c . 9)
27 486
— 97 <18—2+5—81> (10)
= %771'. (11)
1.3 Partc

Rewriting the equation of the curves in terms of y, we find that y = \/z becomes x = 32,
while y = /3 becomes x = 3y. The areas of a cross section perpendicular to the y-axis is
therefore 3y — y?)2. then the required volume is
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2 Problem 2

2.1 Parta

We integrate speed, the magnitude of velocity, to obtain distance traveled. (The problem
gives speed, but the given speed is never zero, and this guarantees that travel is unidirec-
tional. We take the direction of travel to be the positive direction.) The required distance

is

2
(2) = / 120 (1 - 6*10*) dt ~ 206.37005 kilometers.
0

Note that the integral must be computed numerically, which we have done.

2.2 Partb

We have g(z) = 0.05z (1 — e~*/2). We must find the value of

< gle(t) = o (0} (1

when ¢t = 2. But
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We have z(2) from equation (15), while 2/(2) = r(2) = 120(1 — e~4%). Thus,
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The rate of change, taken with respect to time, of the number of liters of gasoline used by

the car when ¢t = 2 hours is approximately 6.00000 liters/hour.



2.3 Partc

We begin by solving the equation 120(1 — e~ 10%)

following are equivalent:
120(1 — e~ 10*) = 8;
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The only positive solution is
In3
t =4/ —=— ~ 0.33145.
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= 80 for ¢. It is easy to see that the
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Thus, speed reaches 80 km/hr when ¢ ~ 0.33145 hours. At that time, position is given

by

. [ In(3)/ 10] ~ 120 /O AR (1 - e—1072> dr ~ 10.79410.
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We carry out the required integration numerically again, and we find that the amount of

fuel, in liters, consumed up to that time is

g (1: [ 1n(3)/10D ~ 0.53726.

3 Problem 3

3.1 Parta

The trapezoidal sum that approximates the area of the river cross section is

[(0+7) -8+ (T+8) 6+ (8+2)-8+ (2+0)-2] =115
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The area of the river cross section is about 115 square feet.
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3.2 Partb

We integrate area times volumetric flow, with respect to time. Then we divide the result
by the length of the time interval to obtain the average volumetric flow.
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The integration is elementary, by way of the substitution ¢ + 10 = w?, followed by an

integration by parts. Numerical integration is faster, and that is the technique we have
used.

(16 + 2sin /7 + 10) dt ~ 1807.16972 £t /min. (31)

3.3 Partc

Once again, we integrate depth from 0 to 24:
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Based on this model, the area of the cross section is 384 /7 ~ 122.23100 square feet.

3.4 Partd

We must again integrate area times volumetric flow, this time using the area found in
Part ¢, above, and with ¢ varying from 40 to 60. We integrate numerically again, and we
obtain

384 1 (%0 ,

—— [ (16 +2sinvt+ 10) dt ~ 2181.91265. (33)
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The average volumetric flow during the interval 40 < ¢ < 60 is about 2181.91265 cubic
feet per minute. This value exceeds the given safety limit of 2100 cubic feet per minute
and indicates that water must be diverted.

4 Problem 4

4.1 Parta

By the Fundamental Theorem of Calculus and the Chain Rule, from

f(z) = v Vi +2dt, (34)

0



we see that
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Then from g(z) = f(sinz) it follows from what we have seen above and, again, the Chain
Rule that

g (z) = f'(sinz) cosx (37)

= 3cosxzV 4+ 9sin? z. (38)

4.2 Partb

The slope of the tangent line to y = g(z) at x = 7 is

g (7) =3cosmV4+9sin’ 7 = —6 (39)

An equation for the tangent line to the curve y = g(z) at the point corresponding to z = 7
is therefore
y=g(m)+g(m)(z—m)=0-6(x—m), or (40)
y =6(m —x). (41)

4.3 Partc

When z > 0, the value f(x) is the integral of a positive quantity over an interval [0, 3z],
and from this it follows that f is an increasing function throughout the interval [0, co). But
the sine function carries the interval [0, 7] onto the interval [0, 1], and the maximum value
of f(x) on this intervalis f(1) = f[sin(7/2)]. Therefore, the maximal value of g(x) on [0, 7]
is

3
g(m/2) = f[sin(7/2)] = /0 V4 +t2dt. (42)

Note: Evaluation of the integral is not required. However, a trig substitution followed by
an integration by parts gives
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5 Problem 5

5.1 Parta

Inflections points for g occur at local extrema of ¢’. There are two such on the given graph:
One at z = 1, and one at z = 4.

5.2 Partb

From the picture, we see that ¢’(z) < 0 throughout the intervals [-3,—1) and (2, 6). Con-
sequently, g is decreasing on the intervals [-3, —1] and (2, 6], and ¢ is increasing on the
intervals [—1,2] and [6,7]. [Note: A function that is continuous on an interval [a, b] and
increasing on (a,b) must necessarily be increasing on [a, b].] It follows that the absolute
maximum value of g(z) must lie either at = 2, which is the boundary between an inter-
val where g increases to an interval where g decreases, or at one of the endpoints of the
interval [—3, 7].

We are given g(2) = 5. Making repeated use of the fact that the area of a triangle is one-
half its altitude times its base, and that the Fundamental Theorem of Calculus guarantees
us that g(z) = g(2) + [ ¢'(€) d§, we find that

g(—=3)=5— (2 — 4) = % and (45)
1 3
g(T) =5—4+5="7. (46)

We now see that g(—3) = 15/2 gives the absolute maximum value for g(z) when —3 <
Tz <T.

5.3 Partc

The average rate of change of g(z) on the interval [—3, 7] is
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where we have used the values of g(—3) and ¢(7) that we computed in Part b, above.



5.4 Partd

The average rate of change of ¢'(z) on the interval [—3, 7] is
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were we have read ¢'(—3) = —4 and ¢/(7) = 1 from the given graph.

The Mean Value Theorem does not apply to the function ¢’ on the interval [—3, 7], because
the hypotheses of that theorem require that ¢”(z) exist for all values of z that lie in (-3, 7).
However, ¢”(1) and ¢”(4) do not exist for this function. (This can be seen by considering
the left and right derivatives of ¢’ at the points in question.)

6 Problem 6
6.1 Parta
Let

2?4+ 22 +y* + 4y = 5. (49)

We suppose that this equation defines y implicitly as a function of z. Then, differentiating
both sides of equation (49) with respect to =, we find that

20 + 2+ 4:3/35;—?C + 4% = 0, whence (50)
% - _2(§3++11)' 1)
6.2 Partb
At the point (—2, 1), we substitute for = and y in equation (51) to find that
dy 241 1 -

dv  2(13+1) 4

An equation for the line tangent, at (—2,1), to the curve with equation (49) is there-
fore

yzl—i—i(z—i—Q). (53)



6.3 Partc

We begin anew with (49), which we now treat as giving = as an implicitly defined function
of y. Differentiating both sides of the equation with respect to y then gives

2% 4 9% 43 4=, or (54)
dy dy
dx 2(y> +1)
— = 55
dy z+1 (55)
This derivative can vanish, so that the tangent line is vertical, only at points wherey = —1.

But we must be sure that z + 1 # 0 before we may draw conclusions about dz/dy. The
corresponding values of z are then given by

22 4+2x+1—4=5, or (56)
(z+1)2=09, (57)
whence x = —4 or z = 2. We conclude that the curve has vertical tangent lines at the

points (—4, —1) and (2, —1).

6.4 Partd

At any point where this curve meets the z-axis, we must have y = 0, whence 2 + 2z +
0*+4-0=5. Thus 22 + 22 + 1 = 6, or (z + 1)? = 6, from which we see that z = /6 — 1
or z = —/6 — 1. But from equation (51), at (v/6 — 1,0) we have y/ = —/6/2, while at
(—\/5 —1, 0) we have ¢/ = /6 /2. From these calculations, it follows that this curve can’t
have a horizontal tangent at any of its xz-intercepts.

Note: In my opinion, this problem (particularly Part c) perpetuates some of the difficulties
in the way we treat implicit differentiation in our elementary calculus courses. The im-
plicit differentiation technique depends for its justification on the Implicit Function Theo-
rem, which very few students encounter before advanced calculus—or even intermediate
analysis. We can’t expect students of AP Calculus to know this theorem, but that’s not a
good reason why we should ignore its requirements. Among the hypotheses of that theo-
rem is the requirement that, when we want to be sure that an equation F'(z,y) = 0 defines
a unique differentiable function y(x) implicitly in some neighborhood of a point (z, yo),
we must know that the partial derivative F), satisfies F},(x¢, o) # 0. This means (among
other things) that it is not correct to conclude that a curve F(x,y) = 0 has a vertical tangent at
a point (o, yo) on the curve by using implicit differentiation to obtain y' and then noting that y/,
so obtained, is a fraction whose denominator vanishes at (x,yo). To see what kind of trouble
this strategy can get us into, consider the curve y* — 22 = 0 at the point (0, 0).



For a deeper discussion of this and associated difficulties, see my short note titled “On
Implicit Differentiation.” As of the date of this set of solutions, there is a link to this note
athttp://sites.msudenver.edu/talmanl/ap—-calculus—-resources/
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