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1 Problem 1

1.1 Part a

The intersection points for the two curves have x-coordinates that are the solutions of the
equation

√
x = x/3, which are x = 0 and x = 9. Thus, the region R lies over the interval

[0, 9], where
√
x ≥ x/3. The required area is therefore∫ 9

0

(√
x− x

3

)
dx =

[
2

3
x3/2 − 1

6
x2
] ∣∣∣∣9

0

(1)

=
2

3
· 27− 1

6
· 81 =

9

2
. (2)

1.2 Part b

Let V denote the desired volume.

By the method of washers:

1



V = π

∫ 3

0

[
(3y + 1)2 −

(
y2 + 1

)2]
dy (3)

= −π
∫ 3

0

(
y4 − 7y2 − 6y

)
dy (4)

= −π
[
1

5
y5 − 7

3
y3 − 3y2

] ∣∣∣∣3
0

(5)

= −π
[
243

5
− 63− 27

]
=

207

5
π. (6)

By the method of shells:

V = 2π

∫ 9

0

(√
x− x

3

)
(x+ 1) dx (7)

= 2π

∫ 9

0

(
x1/2 − 1

3
x+ x3/2 − 1

3
x2
)
dx (8)

= 2π

[
2

3
x3/2 − 1

6
x2 +

2

5
x5/2 − 1

9
x3
] ∣∣∣∣9

0

(9)

= 2π

(
18− 27

2
+

486

5
− 81

)
(10)

=
207

5
π. (11)

1.3 Part c

Rewriting the equation of the curves in terms of y, we find that y =
√
x becomes x = y2,

while y = x/3 becomes x = 3y. The areas of a cross section perpendicular to the y-axis is
therefore 3y − y2)2. then the required volume is∫ 3

0

(
3y − y2

)2
dy =

∫ 3

0

(
9y2 − 6y3 + y4

)
dy (12)

=

[
3y3 − 3

2
y4 +

1

5
y5
] ∣∣∣∣3

0

(13)

= 3 · 27− 3

2
· 81 + 1

5
· 243 =

81

10
. (14)
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2 Problem 2

2.1 Part a

We integrate speed, the magnitude of velocity, to obtain distance traveled. (The problem
gives speed, but the given speed is never zero, and this guarantees that travel is unidirec-
tional. We take the direction of travel to be the positive direction.) The required distance
is

x(2) =

∫ 2

0
120

(
1− e−10t2

)
dt ∼ 206.37005 kilometers. (15)

Note that the integral must be computed numerically, which we have done.

2.2 Part b

We have g(x) = 0.05x
(
1− e−x/2

)
. We must find the value of

d

dt
g[x(t)] = g′[x(t)]x′(t) (16)

when t = 2. But

g′(x) =
d

dx

[
0.05x

(
1− e−x/2

)]
(17)

= 0.05
(
1− e−x/2

)
+ 0.025xe−x/2, while it is given that (18)

x′(t) = r(t) = 120(1− e−10t2). (19)

We have x(2) from equation (15), while x′(2) = r(2) = 120(1− e−40). Thus,

d

dt
g[x(t)]

∣∣∣∣
t=2

=
[
6
(
1− e−x(2)/2

)
+ 3x(2)e−x(2)/2

]
(1− e−40) (20)

∼ 6.00000 (21)

The rate of change, taken with respect to time, of the number of liters of gasoline used by
the car when t = 2 hours is approximately 6.00000 liters/hour.
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2.3 Part c

We begin by solving the equation 120(1 − e−10t
2
) = 80 for t. It is easy to see that the

following are equivalent:

120(1− e−10t2) = 80; (22)

1− e−10t2 =
2

3
; (23)

e10t
2
= 3; (24)

10t2 = ln 3; (25)

t2 =
ln 3

10
. (26)

The only positive solution is

t =

√
ln 3

10
∼ 0.33145. (27)

Thus, speed reaches 80 km/hr when t ∼ 0.33145 hours. At that time, position is given
by

x
[√

ln(3)/10
]
∼ 120

∫ ln(3)/
√
10

0

(
1− e−10τ2

)
dτ ∼ 10.79410. (28)

We carry out the required integration numerically again, and we find that the amount of
fuel, in liters, consumed up to that time is

g
(
x
[√

ln(3)/10
])
∼ 0.53726. (29)

3 Problem 3

3.1 Part a

The trapezoidal sum that approximates the area of the river cross section is

1

2
[(0 + 7) · 8 + (7 + 8) · 6 + (8 + 2) · 8 + (2 + 0) · 2] = 115 (30)

The area of the river cross section is about 115 square feet.
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3.2 Part b

We integrate area times volumetric flow, with respect to time. Then we divide the result
by the length of the time interval to obtain the average volumetric flow.

115

120

∫ 120

0

(
16 + 2 sin

√
t+ 10

)
dt ∼ 1807.16972 ft3/min. (31)

The integration is elementary, by way of the substitution t + 10 = w2, followed by an
integration by parts. Numerical integration is faster, and that is the technique we have
used.

3.3 Part c

Once again, we integrate depth from 0 to 24:∫ 24

0
8 sin

πx

24
dx = −192

π
cos

πx

24

∣∣∣∣24
0

= −192

π
cosπ +

192

π
cos 0 =

384

π
. (32)

Based on this model, the area of the cross section is 384/π ∼ 122.23100 square feet.

3.4 Part d

We must again integrate area times volumetric flow, this time using the area found in
Part c, above, and with t varying from 40 to 60. We integrate numerically again, and we
obtain

384

π
· 1
20

∫ 60

40

(
16 + 2 sin

√
t+ 10

)
dt ∼ 2181.91265. (33)

The average volumetric flow during the interval 40 ≤ t ≤ 60 is about 2181.91265 cubic
feet per minute. This value exceeds the given safety limit of 2100 cubic feet per minute
and indicates that water must be diverted.

4 Problem 4

4.1 Part a

By the Fundamental Theorem of Calculus and the Chain Rule, from

f(x) =

∫ 3x

0

√
4 + t2 dt, (34)
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we see that

f ′(x) =
d

dx

[∫ 3x

0

√
4 + t2 dt

]
(35)

=
√

4 + 9x2 · d
dx

(3x) = 3
√
4 + 9x2. (36)

Then from g(x) = f(sinx) it follows from what we have seen above and, again, the Chain
Rule that

g′(x) = f ′(sinx) cosx (37)

= 3 cosx
√

4 + 9 sin2 x. (38)

4.2 Part b

The slope of the tangent line to y = g(x) at x = π is

g′(π) = 3 cosπ
√
4 + 9 sin2 π = −6 (39)

An equation for the tangent line to the curve y = g(x) at the point corresponding to x = π
is therefore

y = g(π) + g′(π)(x− π) = 0− 6(x− π), or (40)
y = 6(π − x). (41)

4.3 Part c

When x > 0, the value f(x) is the integral of a positive quantity over an interval [0, 3x],
and from this it follows that f is an increasing function throughout the interval [0,∞). But
the sine function carries the interval [0, π] onto the interval [0, 1], and the maximum value
of f(x) on this interval is f(1) = f [sin(π/2)]. Therefore, the maximal value of g(x) on [0, π]
is

g(π/2) = f [sin(π/2)] =

∫ 3

0

√
4 + t2 dt. (42)

Note: Evaluation of the integral is not required. However, a trig substitution followed by
an integration by parts gives∫ 3

0

√
4 + t2 dt =

[
1

2
t
√
4 + t2 + 2 ln

∣∣∣∣12 (t+√4 + t2
)∣∣∣∣] ∣∣∣∣3

0

(43)

=
3

2

√
13 + 2 ln

3 +
√
13

2
. (44)
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5 Problem 5

5.1 Part a

Inflections points for g occur at local extrema of g′. There are two such on the given graph:
One at x = 1, and one at x = 4.

5.2 Part b

From the picture, we see that g′(x) < 0 throughout the intervals [−3,−1) and (2, 6). Con-
sequently, g is decreasing on the intervals [−3,−1] and [2, 6], and g is increasing on the
intervals [−1, 2] and [6, 7]. [Note: A function that is continuous on an interval [a, b] and
increasing on (a, b) must necessarily be increasing on [a, b].] It follows that the absolute
maximum value of g(x) must lie either at x = 2, which is the boundary between an inter-
val where g increases to an interval where g decreases, or at one of the endpoints of the
interval [−3, 7].

We are given g(2) = 5. Making repeated use of the fact that the area of a triangle is one-
half its altitude times its base, and that the Fundamental Theorem of Calculus guarantees
us that g(x) = g(2) +

∫ x
2 g
′(ξ) dξ, we find that

g(−3) = 5−
(
3

2
− 4

)
=

15

2
and (45)

g(7) = 5− 4 +
1

2
=

3

2
. (46)

We now see that g(−3) = 15/2 gives the absolute maximum value for g(x) when −3 ≤
x ≤ 7.

5.3 Part c

The average rate of change of g(x) on the interval [−3, 7] is

g(7)− g(−3)
7− (−3)

=
3/2− 15/2

7 + 3
= −3

5
, (47)

where we have used the values of g(−3) and g(7) that we computed in Part b, above.
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5.4 Part d

The average rate of change of g′(x) on the interval [−3, 7] is

g′(7)− g′(−3)
7− (−3)

=
1− (−4)
7− (−3)

=
1

2
, (48)

were we have read g′(−3) = −4 and g′(7) = 1 from the given graph.

The Mean Value Theorem does not apply to the function g′ on the interval [−3, 7], because
the hypotheses of that theorem require that g′′(x) exist for all values of x that lie in (−3, 7).
However, g′′(1) and g′′(4) do not exist for this function. (This can be seen by considering
the left and right derivatives of g′ at the points in question.)

6 Problem 6

6.1 Part a

Let

x2 + 2x+ y4 + 4y = 5. (49)

We suppose that this equation defines y implicitly as a function of x. Then, differentiating
both sides of equation (49) with respect to x, we find that

2x+ 2 + 4y3
dy

dx
+ 4

dy

dx
= 0, whence (50)

dy

dx
= − x+ 1

2(y3 + 1)
. (51)

6.2 Part b

At the point (−2, 1), we substitute for x and y in equation (51) to find that

dy

dx
= − −2 + 1

2(13 + 1)
=

1

4
. (52)

An equation for the line tangent, at (−2, 1), to the curve with equation (49) is there-
fore

y = 1 +
1

4
(x+ 2). (53)
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6.3 Part c

We begin anew with (49), which we now treat as giving x as an implicitly defined function
of y. Differentiating both sides of the equation with respect to y then gives

2x
dx

dy
+ 2

dx

dy
+ 4y3 + 4 = 0, or (54)

dx

dy
= −2(y3 + 1)

x+ 1
(55)

This derivative can vanish, so that the tangent line is vertical, only at points where y = −1.
But we must be sure that x + 1 6= 0 before we may draw conclusions about dx/dy. The
corresponding values of x are then given by

x2 + 2x+ 1− 4 = 5, or (56)

(x+ 1)2 = 9, (57)

whence x = −4 or x = 2. We conclude that the curve has vertical tangent lines at the
points (−4,−1) and (2,−1).

6.4 Part d

At any point where this curve meets the x-axis, we must have y = 0, whence x2 + 2x +
04 + 4 · 0 = 5. Thus x2 + 2x + 1 = 6, or (x + 1)2 = 6, from which we see that x =

√
6 − 1

or x = −
√
6 − 1. But from equation (51), at

(√
6− 1, 0

)
we have y′ = −

√
6/2, while at(

−
√
6− 1, 0

)
we have y′ =

√
6/2. From these calculations, it follows that this curve can’t

have a horizontal tangent at any of its x-intercepts.

Note: In my opinion, this problem (particularly Part c) perpetuates some of the difficulties
in the way we treat implicit differentiation in our elementary calculus courses. The im-
plicit differentiation technique depends for its justification on the Implicit Function Theo-
rem, which very few students encounter before advanced calculus—or even intermediate
analysis. We can’t expect students of AP Calculus to know this theorem, but that’s not a
good reason why we should ignore its requirements. Among the hypotheses of that theo-
rem is the requirement that, when we want to be sure that an equation F (x, y) = 0 defines
a unique differentiable function y(x) implicitly in some neighborhood of a point (x0, y0),
we must know that the partial derivative Fy satisfies Fy(x0, y0) 6= 0. This means (among
other things) that it is not correct to conclude that a curve F (x, y) = 0 has a vertical tangent at
a point (x0, y0) on the curve by using implicit differentiation to obtain y′ and then noting that y′,
so obtained, is a fraction whose denominator vanishes at (x0, y0). To see what kind of trouble
this strategy can get us into, consider the curve y2 − x2 = 0 at the point (0, 0).
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For a deeper discussion of this and associated difficulties, see my short note titled “On
Implicit Differentiation.” As of the date of this set of solutions, there is a link to this note
at http://sites.msudenver.edu/talmanl/ap-calculus-resources/
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