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1 Problem1

1.1 Parta

The area of the region R is

/02 [sinma — (23 — 42)] dx = [_1 CoS L — (1;34 _ 2$2>]

™
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_ [%—(4—8)] - [%—0] — 4,

1.2 Partb

)

)

We must first find solutions, in the interval [0, 2], of the equation 3 — 4z = —2 to find
the limits of integration. We do this numerically, and find that the solutions we need are

x1 ~ 1.67513 and x2 ~ 0.53919.

The areas of that part of the region R which lies below the horizontal line y = —2 is given

by the integral/ 1 [-2 — (2* — 42)] da.
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1.3 Partc

The area, A(t), of a cross section of the solid perpendicular to the z-axis at x = ¢ is given
by
A(t) = [sinmt — (82 — 4t)]°. 3)

Thus, the volume of the solid is
2
/ [sinwt — (£ — 4¢)]” dt ~ 9.97834, 4)
0

where we have evaluated the integral numerically because, although the integral is ele-
mentary, the calculation is lengthy and requires integration by parts.

1129 24
Note: Th t value of the int lis — — —.
ote: The exact value of the integral is - — —3

1.4 Partd

Under the conditions given, the pool is a region in three-dimensional space whose base
is R and whose cross section perpendicular to the z-axis at + = t has area A(t) given

by
A(t) = [sinmt — (£ — 4¢)] (3 —1). (5)

The required volume is thus
2
/[mmﬁ%ﬁ—ﬁﬂ@—ﬂﬁw&%%& (6)
0

Where we have again integrated numerically to avoid a tedious calculation requiring in-
tegration by parts.

116 2
Note: The exact value of the integral is 15 + —.
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2 Problem?2

2.1 Parta

At 5:30 pm, the rate at which the number of people standing in line was changing was
approximately
L(7) — L(4) _ 150 — 126
T—-4 0 T-4

= 8 people per hour. (7)
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2.2 Partb

The average number of people standing in line during the first four hours that tickets
were on sale was

1 4 1 [120 + 156 156 + 176 176 + 126
— ~ (1 - —B-1D+—4-
10 OL(t)dt 4[ 5 (1-0)+ 5 3-1)+ 5 (4-—3) 8)
L0 155.25. )
4
2.3 Partc

The function L is given twice differentiable on [0,9]. It is therefore continuous on [a, b]
and differentiable on (a,b) when [a, b] is any subinterval of [0,9], and we may apply the
Mean Value Theorem to L on any such interval. There must be points, then, &; € (1,3)
and & € (3,4), such that

L(3)— L(1) 176 — 156

L'(&) = ST1  C 3.1 > 0, and (10)
ey — L(4i::1));(3) _ 126;176 0 an

But L” exists throughout [0, 9], so L’ is a continuous function on [¢1,&2]. By the Interme-
diate Value Theorem for continuous functions, there must be a number 7; € (&1, &2) such
that L'(11) = 0. By similar reasoning there must &3 € (4,7) for which L'(£3) > 0, and so
N2 € (&2,&3) where L'(n2) = 0. Further, there must be & € (7,8) for which L'(§4) < 0, and
this guarantees 73 € (£3, &) for which L'(n3) = 0.

We conclude that L'(t) takes on the value 0 at least three times in the interval (0, 9).

Note: We can make this argument even if L is given merely differentiable instead of
twice differentiable, although we can no longer depend on the continuity of L. How-
ever, derivatives necessarily have the Intermediate Value Property in spite of the fact that
they may fail to be continuous’. To see that this is so, suppose that f is differentiable on
an interval (a,b) and let a < o < 3 < b. Suppose that f'(«) < A < f'(B). We let F be the
function defined on [«, 3] by

F(z) = f(z) — Az, whence (12)
Fl(z) = f'(z) = A (13)

This fact is not ordinarily a part of elementary calculus, and it is to be presumed that examinees who
want to use it must state it explicitly.



Now F is continuous on [«, 8], and so must have an absolute minimum on that interval—
which must occur at either an endpoint or a critical point. But F'(«) can’t be a minimum
because F’ (a) = f'(a) — A < 0. Similarly, we deduce that F'(3) can’t be a minimum
because F’ (3) > 0. It follows that there must be a critical number z( € (a, §)—that is, a
number z for which F’(z9) = 0. But F’(z¢) = 0 is equivalent to f/(x¢) = \.e

24 Partd

If T'(t) denotes the number of tickets that have been sold by time ¢, we are given that
T(0) = 0 and T'(t) = 550te~*/2. By the Fundamental Theorem of Calculus,

T(t)=T(0)+ /Ot T' (1) dr = 550 /Ot re 2 dr (14)

The integral is elementary, but requires integration by parts, so we integrate numerically
to learn that 7°(3) ~ 972.78412. Thus, 973 tickets have been sold by 3:00 pm.

3 Problem 3

3.1 Parta
Let V (t) be the volume of spilled oil at time ¢, 7(¢) and h(t) the radius and the height,
respectively, of the spill. Then
V(t) = x [r(t)]? h(t), whence (15)
V'(t) = 2ar(t)h(t)r' (t) + 7 [r(t)]* I (2). (16)

We are given that V'(t) = 2000 cc/min for all ¢, and that at r(to) = 100 cm, h(tg) = 0.5 cm,
and 7' (tg) = 2.5 cm/min. Thus,

2000 = 27 - 100 - 0.5 - 2.5 + 7 - 100% - b/ (o), or (17)
B () = S— ~ 0.03866 cm.min. (18)
407

3.2 Partb

Taking ¢ = 0 to be the moment when the recovery device goes into action, we have

V'(t) = 2000 — 400/t (19)



Thus V (t) has a critical point at t = 25, when V'(t) = 0. Because V'(t) > 0 for ¢t < 25, but
V'(t) < 0 when t > 25, it follows from the First Derivative Test that V' (¢) is maximal when
t = 25.

3.3 Partc

If there were 60, 000 cc of oil in the slick at the moment ¢ = 0, when the recovery device
began to operate, then, by the Fundamental Theorem of Calculus, we must have

t
V(t) =V(0) +/ V'(r)dr. (20)
0
From what we saw in Part b, above, we must therefore have

V(t) = 60000 + / t [2000 — 400+/7] dr. (21)
0

Note: Evaluation of the integral is not required. For the curious,

t
4
60000 + / (2000 — 400+/7] d7 = 60000 + % (15 - 2\/5) t. (22)
0

4 Problem 4

4.1 Parta

Applying the Fundamental Theorem of Calculus to what we are given we find that

x(t) = =2 —i—/o v(T)dr. (23)

This means that z(3) = —10, (5) = —7, and z(6) = —9. From the figure and the other
information given, we have 2/(t) = v(t) < 0for 0 < ¢t < 3 and for 5 < ¢ < 6, while
2'(t) > 0 for 3 < t < 5. Thus, z is decreasing when 0 < ¢t < 3 and when 5 < ¢ < 6, while
x is increasing when 3 < ¢t < 5. thus, the particle is farthest to the left when ¢t = 3, and its
position at that instant is x = —10.

Note: If function continuous on [a, b] is increasing (respectively, decreasing) on (a, b), it
is necessarily increasing (respectively, decreasing) on [a,b]. We should thus include the
endpoints. In the past, the readers haven’t taken this subtlety into account.



4.2 Partb

Because z(0) = —2 and z(3) = —10, (see Part a, above), the particle moves through z = —8
at least once (leftward bound) when 0 < ¢ < 3. Because z(3) = —10 and z(5) = —7 (see
Part a again) it moves through * = —8 again (rightward bound) at some time in the
interval (3,5). Because z(5) = —7 and z(6) = —9 (see Part a again) it moves through —8
still again (now leftward bound) at some time in the interval (5, 6). The existence of these
times is guaranteed, in each case, because the differentiable function + must be continuous
on [0, 6], and continuous functions have the intermediate value property?. That these three
instances are the only instances is guaranteed by the fact the x must be monotonic on each
of the intervals [0, 3], [3, 5], and [5, 6] because velocity, the derivative of z, doesn’t change
sign at a point interior to any of these intervals.

4.3 Partc

Let o(t) denote the particle’s speed at time ¢. Then

o(t) = |v(t)], so that (24)

o)) = [v(t)]?, (25)

20(t)o’ () = 2v(t)v'(t ), or, provided o (t) # 0, (26)
00 0 B

70 = 0 = 27)

The denominator of this last fraction is positive (c(¢) being non-zero), so the sign of o/(t) is
the same as the sign of the product v(¢)v/(¢). On the interval (2, 3), we see from the graph
that v(t) < 0, but that v(¢) is increasing, so that v/(¢) > 0. It follows that v(¢)v'(¢) < 0 on
(2,3), and, therefore, that speed is decreasing on (2, 3).

44 Partd

Acceleration if v/(¢). Thus, acceleration is negative on intervals where v(t) is decreasing.
From the graph and what we have been given about it, acceleration is negative on [0, 1)
and on (4, 6], and only on those intervals.

2See the remarks in the Note to Problem 2, Part c.



5 Problem 5

5.1 Parta

See Figure 1.
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Figure 1: Problem 5, Part a

5.2 Partb

We have

Y (x) = y(@) 2_ 1, together with (28)
Xz

y(2) = 0. (29)

We note that y(z) = 1 gives a solution to (28), but that this solution doesn’t satisfy (29).
We may therefore discard this solution and assume that y(z) # 1. Under this assumption,
we may write (28) as

- L (30)



from which we deduce that

i " d
d¢ = — 31
/2.?J(£)—1g /252’0r G
Inly(&) —1|| = 1 , which is equivalent to (32)
2 2
1 1
ln|y($)—l|—ln|y(2)—1|=—;—|—§. (33)

Applying (29) and noting that In | — 1| = 0, we now see that
ly(e) — 1] = e"/Ze 1", (34)

But, again from (29), we have y(2) — 1 = —1 < 0, so that y(x) < 1 for all z in its domain.
Thus, we can rewrite (34) as

1 —y(z) = e/?e V" and we see that (35)
y(r) =1-— \1//8 . (36)
e x
5.3 Partc
| L NG
Jim o) = Ji |1 47
:1—,L:1—\/E. (38)
lim,_s oo €/
6 Problem 6
6.1 Parta
f,(ez)_l—lne2_ 1—2__674 (39)
T2 T e T ’
so an equation of the tangent line to the curve y = f(x) at the point where z = €? is
y=2e"2—et(z—é?). (40)



6.2 Partb

f'(x) = 0 when (1 —Inz)/2? = 0, so the z-coordinate of the critical point of f is z = e. We
note that f’(z) > 0 when z < ¢, but that f/(x) < 0 when = > ¢, and it follows from the
First Derivative Test that f has a local maximum at x = e.

6.3 Partc

from
fla) = _x;” we have 1)
) = (-1/z) - 22 — (22)(1 — Inx) _2mz-3 )

(12)2 3

We note that f”(z) < 0 when = < €32 but that f”(z) > 0 when & > ¢%2. The function f

therefore has an inflection point at = = ¢%/2.

64 d
lim f(z) = lim nz _ lim 1 Inz| = -0 (43)
z—07F 250t T a0t | T - .

because 1/z — coand Inx — —ocasx — 0.



