AP Calculus 2008 AB FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

June 18, 2017

1 Problem 1

1.1 Part a

The area of the region R is

$$
\begin{align*}
\int_{0}^{2}\left[\sin \pi x-\left(x^{3}-4 x\right)\right] d x & =\left.\left[-\frac{1}{\pi} \cos \pi x-\left(\frac{1}{4} x^{4}-2 x^{2}\right)\right]\right|_{0} ^{2} \tag{1}\\
& =\left[-\frac{1}{\pi} \cos 2 \pi-(4-8)\right]-\left[-\frac{1}{\pi} \cos 0-0\right]=4 \tag{2}
\end{align*}
$$

1.2 Part b

We must first find solutions, in the interval $[0,2]$, of the equation $x^{3}-4 x=-2$ to find the limits of integration. We do this numerically, and find that the solutions we need are $x_{1} \sim 1.67513$ and $x_{2} \sim 0.53919$.

The areas of that part of the region R which lies below the horizontal line $y=-2$ is given by the integral $\int_{x_{2}}^{x_{1}}\left[-2-\left(x^{3}-4 x\right)\right] d x$.

1.3 Part c

The area, $A(t)$, of a cross section of the solid perpendicular to the x-axis at $x=t$ is given by

$$
\begin{equation*}
A(t)=\left[\sin \pi t-\left(t^{3}-4 t\right)\right]^{2} \tag{3}
\end{equation*}
$$

Thus, the volume of the solid is

$$
\begin{equation*}
\int_{0}^{2}\left[\sin \pi t-\left(t^{3}-4 t\right)\right]^{2} d t \sim 9.97834 \tag{4}
\end{equation*}
$$

where we have evaluated the integral numerically because, although the integral is elementary, the calculation is lengthy and requires integration by parts.
Note: The exact value of the integral is $\frac{1129}{105}-\frac{24}{\pi^{3}}$.

1.4 Part d

Under the conditions given, the pool is a region in three-dimensional space whose base is R and whose cross section perpendicular to the x-axis at $x=t$ has area $A(t)$ given by

$$
\begin{equation*}
A(t)=\left[\sin \pi t-\left(t^{3}-4 t\right)\right](3-t) \tag{5}
\end{equation*}
$$

The required volume is thus

$$
\begin{equation*}
\int_{0}^{2}\left[\sin \pi t-\left(t^{3}-4 t\right)\right](3-t) d t \sim 8.36995 \tag{6}
\end{equation*}
$$

Where we have again integrated numerically to avoid a tedious calculation requiring integration by parts.
Note: The exact value of the integral is $\frac{116}{15}+\frac{2}{\pi}$.

2 Problem 2

2.1 Part a

At 5:30 pm, the rate at which the number of people standing in line was changing was approximately

$$
\begin{equation*}
\frac{L(7)-L(4)}{7-4}=\frac{150-126}{7-4}=8 \text { people per hour. } \tag{7}
\end{equation*}
$$

2.2 Part b

The average number of people standing in line during the first four hours that tickets were on sale was

$$
\begin{align*}
\frac{1}{4-0} \int_{0}^{4} L(t) d t & \sim \frac{1}{4}\left[\frac{120+156}{2}(1-0)+\frac{156+176}{2}(3-1)+\frac{176+126}{2}(4-3)\right] \tag{8}\\
& \sim \frac{621}{4}=155.25 . \tag{9}
\end{align*}
$$

2.3 Part c

The function L is given twice differentiable on $[0,9]$. It is therefore continuous on $[a, b]$ and differentiable on (a, b) when $[a, b]$ is any subinterval of $[0,9]$, and we may apply the Mean Value Theorem to L on any such interval. There must be points, then, $\xi_{1} \in(1,3)$ and $\xi_{2} \in(3,4)$, such that

$$
\begin{align*}
& L^{\prime}\left(\xi_{1}\right)=\frac{L(3)-L(1)}{3-1}=\frac{176-156}{3-1}>0, \text { and } \tag{10}\\
& L^{\prime}\left(\xi_{2}\right)=\frac{L(4)-L(3)}{4-3}=\frac{126-176}{1}<0 . \tag{11}
\end{align*}
$$

But $L^{\prime \prime}$ exists throughout $[0,9]$, so L^{\prime} is a continuous function on $\left[\xi_{1}, \xi_{2}\right]$. By the Intermediate Value Theorem for continuous functions, there must be a number $\eta_{1} \in\left(\xi_{1}, \xi_{2}\right)$ such that $L^{\prime}\left(\eta_{1}\right)=0$. By similar reasoning there must $\xi_{3} \in(4,7)$ for which $L^{\prime}\left(\xi_{3}\right)>0$, and so $\eta_{2} \in\left(\xi_{2}, \xi_{3}\right)$ where $L^{\prime}\left(\eta_{2}\right)=0$. Further, there must be $\xi_{4} \in(7,8)$ for which $L^{\prime}\left(\xi_{4}\right)<0$, and this guarantees $\eta_{3} \in\left(\xi_{3}, \xi_{4}\right)$ for which $L^{\prime}\left(\eta_{3}\right)=0$.
We conclude that $L^{\prime}(t)$ takes on the value 0 at least three times in the interval $(0,9)$.
Note: We can make this argument even if L is given merely differentiable instead of twice differentiable, although we can no longer depend on the continuity of L^{\prime}. However, derivatives necessarily have the Intermediate Value Property in spite of the fact that they may fail to be continuous ${ }^{1}$. To see that this is so, suppose that f is differentiable on an interval (a, b) and let $a<\alpha<\beta<b$. Suppose that $f^{\prime}(\alpha)<\lambda<f^{\prime}(\beta)$. We let F be the function defined on $[\alpha, \beta]$ by

$$
\begin{align*}
F(x) & =f(x)-\lambda x, \text { whence } \tag{12}\\
F^{\prime}(x) & =f^{\prime}(x)-\lambda . \tag{13}
\end{align*}
$$

[^0]Now F is continuous on $[\alpha, \beta]$, and so must have an absolute minimum on that intervalwhich must occur at either an endpoint or a critical point. But $F(\alpha)$ can't be a minimum because $F_{+}^{\prime}(\alpha)=f^{\prime}(\alpha)-\lambda<0$. Similarly, we deduce that $F(\beta)$ can't be a minimum because $F_{-}^{\prime}(\beta)>0$. It follows that there must be a critical number $x_{0} \in(\alpha, \beta)$-that is, a number x_{0} for which $F^{\prime}\left(x_{0}\right)=0$. But $F^{\prime}\left(x_{0}\right)=0$ is equivalent to $f^{\prime}\left(x_{0}\right)=\lambda$. \bullet

2.4 Part d

If $T(t)$ denotes the number of tickets that have been sold by time t, we are given that $T(0)=0$ and $T^{\prime}(t)=550 t e^{-t / 2}$. By the Fundamental Theorem of Calculus,

$$
\begin{equation*}
T(t)=T(0)+\int_{0}^{t} T^{\prime}(\tau) d \tau=550 \int_{0}^{t} \tau e^{-\tau / 2} d \tau \tag{14}
\end{equation*}
$$

The integral is elementary, but requires integration by parts, so we integrate numerically to learn that $T(3) \sim 972.78412$. Thus, 973 tickets have been sold by 3:00 pm.

3 Problem 3

3.1 Part a

Let $V(t)$ be the volume of spilled oil at time $t, r(t)$ and $h(t)$ the radius and the height, respectively, of the spill. Then

$$
\begin{align*}
V(t) & =\pi[r(t)]^{2} h(t), \text { whence } \tag{15}\\
V^{\prime}(t) & =2 \pi r(t) h(t) r^{\prime}(t)+\pi[r(t)]^{2} h^{\prime}(t) . \tag{16}
\end{align*}
$$

We are given that $V^{\prime}(t)=2000 \mathrm{cc} / \mathrm{min}$ for all t, and that at $r\left(t_{0}\right)=100 \mathrm{~cm}, h\left(t_{0}\right)=0.5 \mathrm{~cm}$, and $r^{\prime}\left(t_{0}\right)=2.5 \mathrm{~cm} / \mathrm{min}$. Thus,

$$
\begin{align*}
2000 & =2 \pi \cdot 100 \cdot 0.5 \cdot 2.5+\pi \cdot 100^{2} \cdot h^{\prime}\left(t_{0}\right), \text { or } \tag{17}\\
h^{\prime}\left(t_{0}\right) & =\frac{8-\pi}{40 \pi} \sim 0.03866 \mathrm{~cm} . \mathrm{min} . \tag{18}
\end{align*}
$$

3.2 Part b

Taking $t=0$ to be the moment when the recovery device goes into action, we have

$$
\begin{equation*}
V^{\prime}(t)=2000-400 \sqrt{t} \tag{19}
\end{equation*}
$$

Thus $V(t)$ has a critical point at $t=25$, when $V^{\prime}(t)=0$. Because $V^{\prime}(t)>0$ for $t<25$, but $V^{\prime}(t)<0$ when $t>25$, it follows from the First Derivative Test that $V(t)$ is maximal when $t=25$.

3.3 Part c

If there were $60,000 \mathrm{cc}$ of oil in the slick at the moment $t=0$, when the recovery device began to operate, then, by the Fundamental Theorem of Calculus, we must have

$$
\begin{equation*}
V(t)=V(0)+\int_{0}^{t} V^{\prime}(\tau) d \tau \tag{20}
\end{equation*}
$$

From what we saw in Part b, above, we must therefore have

$$
\begin{equation*}
V(t)=60000+\int_{0}^{t}[2000-400 \sqrt{\tau}] d \tau . \tag{21}
\end{equation*}
$$

Note: Evaluation of the integral is not required. For the curious,

$$
\begin{equation*}
60000+\int_{0}^{t}[2000-400 \sqrt{\tau}] d \tau=60000+\frac{400}{3}(15-2 \sqrt{t}) t . \tag{22}
\end{equation*}
$$

4 Problem 4

4.1 Part a

Applying the Fundamental Theorem of Calculus to what we are given we find that

$$
\begin{equation*}
x(t)=-2+\int_{0}^{t} v(\tau) d \tau . \tag{23}
\end{equation*}
$$

This means that $x(3)=-10, x(5)=-7$, and $x(6)=-9$. From the figure and the other information given, we have $x^{\prime}(t)=v(t)<0$ for $0<t<3$ and for $5<t<6$, while $x^{\prime}(t)>0$ for $3<t<5$. Thus, x is decreasing when $0 \leq t \leq 3$ and when $5 \leq t \leq 6$, while x is increasing when $3 \leq t \leq 5$. thus, the particle is farthest to the left when $t=3$, and its position at that instant is $x=-10$.

Note: If function continuous on $[a, b]$ is increasing (respectively, decreasing) on (a, b), it is necessarily increasing (respectively, decreasing) on $[a, b]$. We should thus include the endpoints. In the past, the readers haven't taken this subtlety into account.

4.2 Part b

Because $x(0)=-2$ and $x(3)=-10$, (see Part a, above), the particle moves through $x=-8$ at least once (leftward bound) when $0<t<3$. Because $x(3)=-10$ and $x(5)=-7$ (see Part a again) it moves through $x=-8$ again (rightward bound) at some time in the interval $(3,5)$. Because $x(5)=-7$ and $x(6)=-9$ (see Part a again) it moves through -8 still again (now leftward bound) at some time in the interval $(5,6)$. The existence of these times is guaranteed, in each case, because the differentiable function x must be continuous on $[0,6]$, and continuous functions have the intermediate value property ${ }^{2}$. That these three instances are the only instances is guaranteed by the fact the x must be monotonic on each of the intervals $[0,3],[3,5]$, and $[5,6]$ because velocity, the derivative of x, doesn't change sign at a point interior to any of these intervals.

4.3 Part c

Let $\sigma(t)$ denote the particle's speed at time t. Then

$$
\begin{align*}
\sigma(t) & =|v(t)|, \text { so that } \tag{24}\\
{[\sigma(t)]^{2} } & =[v(t)]^{2}, \text { and } \tag{25}\\
2 \sigma(t) \sigma^{\prime}(t) & =2 v(t) v^{\prime}(t), \text { or, provided } \sigma(t) \neq 0, \tag{26}\\
\sigma^{\prime}(t) & =\frac{v(t)}{\sigma(t)} v^{\prime}(t)=\frac{v(t) v^{\prime}(t)}{|v(t)|} . \tag{27}
\end{align*}
$$

The denominator of this last fraction is positive ($\sigma(t)$ being non-zero), so the sign of $\sigma^{\prime}(t)$ is the same as the sign of the product $v(t) v^{\prime}(t)$. On the interval $(2,3)$, we see from the graph that $v(t)<0$, but that $v(t)$ is increasing, so that $v^{\prime}(t)>0$. It follows that $v(t) v^{\prime}(t)<0$ on $(2,3)$, and, therefore, that speed is decreasing on $(2,3)$.

4.4 Part d

Acceleration if $v^{\prime}(t)$. Thus, acceleration is negative on intervals where $v(t)$ is decreasing. From the graph and what we have been given about it, acceleration is negative on $[0,1)$ and on $(4,6]$, and only on those intervals.

[^1]
5 Problem 5

5.1 Part a

See Figure 1.

Figure 1: Problem 5, Part a

5.2 Part b

We have

$$
\begin{align*}
y^{\prime}(x) & =\frac{y(x)-1}{x^{2}}, \text { together with } \tag{28}\\
y(2) & =0 . \tag{29}
\end{align*}
$$

We note that $y(x) \equiv 1$ gives a solution to (28), but that this solution doesn't satisfy (29). We may therefore discard this solution and assume that $y(x) \neq 1$. Under this assumption, we may write (28) as

$$
\begin{equation*}
\frac{y^{\prime}(x)}{y(x)-1}=\frac{1}{x^{2}}, \tag{30}
\end{equation*}
$$

from which we deduce that

$$
\begin{align*}
\int_{2}^{x} \frac{y^{\prime}(\xi)}{y(\xi)-1} d \xi & =\int_{2}^{x} \frac{d \xi}{\xi^{2}}, \text { or } \tag{31}\\
\left.\ln |y(\xi)-1|\right|_{2} ^{x} & =-\left.\frac{1}{\xi}\right|_{2} ^{x}, \text { which is equivalent to } \tag{32}\\
\ln |y(x)-1|-\ln |y(2)-1| & =-\frac{1}{x}+\frac{1}{2} \tag{33}
\end{align*}
$$

Applying (29) and noting that $\ln |-1|=0$, we now see that

$$
\begin{equation*}
|y(x)-1|=e^{1 / 2} e^{-1 / x} \tag{34}
\end{equation*}
$$

But, again from (29), we have $y(2)-1=-1<0$, so that $y(x)<1$ for all x in its domain. Thus, we can rewrite (34) as

$$
\begin{align*}
1-y(x) & =e^{1 / 2} e^{-1 / x}, \text { and we see that } \tag{35}\\
y(x) & =1-\frac{\sqrt{e}}{e^{1 / x}} \tag{36}
\end{align*}
$$

5.3 Part c

$$
\begin{align*}
\lim _{x \rightarrow \infty} y(x) & =\lim _{x \rightarrow \infty}\left[1-\frac{\sqrt{e}}{e^{1 / x}}\right] \tag{37}\\
& =1-\frac{\sqrt{e}}{\lim _{x \rightarrow \infty} e^{1 / x}}=1-\sqrt{e} \tag{38}
\end{align*}
$$

6 Problem 6

6.1 Part a

$$
\begin{equation*}
f^{\prime}\left(e^{2}\right)=\frac{1-\ln e^{2}}{\left(e^{2}\right)^{2}}=\frac{1-2}{e^{4}}=-e^{-4} \tag{39}
\end{equation*}
$$

so an equation of the tangent line to the curve $y=f(x)$ at the point where $x=e^{2}$ is

$$
\begin{equation*}
y=2 e^{-2}-e^{-4}\left(x-e^{2}\right) \tag{40}
\end{equation*}
$$

6.2 Part b

$f^{\prime}(x)=0$ when $(1-\ln x) / x^{2}=0$, so the x-coordinate of the critical point of f is $x=e$. We note that $f^{\prime}(x)>0$ when $x<e$, but that $f^{\prime}(x)<0$ when $x>e$, and it follows from the First Derivative Test that f has a local maximum at $x=e$.

6.3 Part c

from

$$
\begin{align*}
& f^{\prime}(x)=\frac{1-\ln x}{x^{2}}, \text { we have } \tag{41}\\
& f^{\prime \prime}(x)=\frac{(-1 / x) \cdot x^{2}-(2 x)(1-\ln x)}{\left(x^{2}\right)^{2}}=\frac{2 \ln x-3}{x^{3}} . \tag{42}
\end{align*}
$$

We note that $f^{\prime \prime}(x)<0$ when $x<e^{3 / 2}$ but that $f^{\prime \prime}(x)>0$ when $x>e^{3 / 2}$. The function f therefore has an inflection point at $x=e^{3 / 2}$.

6.4 d

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x}=\lim _{x \rightarrow 0^{+}}\left[\frac{1}{x} \cdot \ln x\right]=-\infty . \tag{43}
\end{equation*}
$$

because $1 / x \rightarrow \infty$ and $\ln x \rightarrow-\infty$ as $x \rightarrow 0^{+}$.

[^0]: ${ }^{1}$ This fact is not ordinarily a part of elementary calculus, and it is to be presumed that examinees who want to use it must state it explicitly.

[^1]: ${ }^{2}$ See the remarks in the Note to Problem 2, Part c.

