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1 Problem 1

1.1 Part a

The area of the region R is∫ 2

0

[
sinπx−

(
x3 − 4x

)]
dx =

[
− 1

π
cosπx−

(
1

4
x4 − 2x2

)] ∣∣∣∣2
0

(1)

=

[
���

��
− 1

π
cos 2π − (4− 8)

]
−
[
���

��
− 1

π
cos 0− 0

]
= 4. (2)

1.2 Part b

We must first find solutions, in the interval [0, 2], of the equation x3 − 4x = −2 to find
the limits of integration. We do this numerically, and find that the solutions we need are
x1 ∼ 1.67513 and x2 ∼ 0.53919.

The areas of that part of the region R which lies below the horizontal line y = −2 is given

by the integral
∫ x1

x2

[
−2−

(
x3 − 4x

)]
dx.
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1.3 Part c

The area, A(t), of a cross section of the solid perpendicular to the x-axis at x = t is given
by

A(t) =
[
sinπt−

(
t3 − 4t

)]2
. (3)

Thus, the volume of the solid is∫ 2

0

[
sinπt−

(
t3 − 4t

)]2
dt ∼ 9.97834, (4)

where we have evaluated the integral numerically because, although the integral is ele-
mentary, the calculation is lengthy and requires integration by parts.

Note: The exact value of the integral is
1129

105
− 24

π3
.

1.4 Part d

Under the conditions given, the pool is a region in three-dimensional space whose base
is R and whose cross section perpendicular to the x-axis at x = t has area A(t) given
by

A(t) =
[
sinπt− (t3 − 4t)

]
(3− t). (5)

The required volume is thus∫ 2

0

[
sinπt− (t3 − 4t)

]
(3− t) dt ∼ 8.36995, (6)

Where we have again integrated numerically to avoid a tedious calculation requiring in-
tegration by parts.

Note: The exact value of the integral is
116

15
+

2

π
.

2 Problem 2

2.1 Part a

At 5:30 pm, the rate at which the number of people standing in line was changing was
approximately

L(7)− L(4)
7− 4

=
150− 126

7− 4
= 8 people per hour. (7)
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2.2 Part b

The average number of people standing in line during the first four hours that tickets
were on sale was

1

4− 0

∫ 4

0
L(t) dt ∼ 1

4

[
120 + 156

2
(1− 0) +

156 + 176

2
(3− 1) +

176 + 126

2
(4− 3)

]
(8)

∼ 621

4
= 155.25. (9)

2.3 Part c

The function L is given twice differentiable on [0, 9]. It is therefore continuous on [a, b]
and differentiable on (a, b) when [a, b] is any subinterval of [0, 9], and we may apply the
Mean Value Theorem to L on any such interval. There must be points, then, ξ1 ∈ (1, 3)
and ξ2 ∈ (3, 4), such that

L′(ξ1) =
L(3)− L(1)

3− 1
=

176− 156

3− 1
> 0, and (10)

L′(ξ2) =
L(4)− L(3)

4− 3
=

126− 176

1
< 0. (11)

But L′′ exists throughout [0, 9], so L′ is a continuous function on [ξ1, ξ2]. By the Interme-
diate Value Theorem for continuous functions, there must be a number η1 ∈ (ξ1, ξ2) such
that L′(η1) = 0. By similar reasoning there must ξ3 ∈ (4, 7) for which L′(ξ3) > 0, and so
η2 ∈ (ξ2, ξ3) where L′(η2) = 0. Further, there must be ξ4 ∈ (7, 8) for which L′(ξ4) < 0, and
this guarantees η3 ∈ (ξ3, ξ4) for which L′(η3) = 0.

We conclude that L′(t) takes on the value 0 at least three times in the interval (0, 9).

Note: We can make this argument even if L is given merely differentiable instead of
twice differentiable, although we can no longer depend on the continuity of L′. How-
ever, derivatives necessarily have the Intermediate Value Property in spite of the fact that
they may fail to be continuous1. To see that this is so, suppose that f is differentiable on
an interval (a, b) and let a < α < β < b. Suppose that f ′(α) < λ < f ′(β). We let F be the
function defined on [α, β] by

F (x) = f(x)− λx, whence (12)
F ′(x) = f ′(x)− λ. (13)

1This fact is not ordinarily a part of elementary calculus, and it is to be presumed that examinees who
want to use it must state it explicitly.
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Now F is continuous on [α, β], and so must have an absolute minimum on that interval—
which must occur at either an endpoint or a critical point. But F (α) can’t be a minimum
because F ′+(α) = f ′(α) − λ < 0. Similarly, we deduce that F (β) can’t be a minimum
because F ′−(β) > 0. It follows that there must be a critical number x0 ∈ (α, β)—that is, a
number x0 for which F ′(x0) = 0. But F ′(x0) = 0 is equivalent to f ′(x0) = λ.•

2.4 Part d

If T (t) denotes the number of tickets that have been sold by time t, we are given that
T (0) = 0 and T ′(t) = 550te−t/2. By the Fundamental Theorem of Calculus,

T (t) = T (0) +

∫ t

0
T ′(τ) dτ = 550

∫ t

0
τe−τ/2 dτ (14)

The integral is elementary, but requires integration by parts, so we integrate numerically
to learn that T (3) ∼ 972.78412. Thus, 973 tickets have been sold by 3:00 pm.

3 Problem 3

3.1 Part a

Let V (t) be the volume of spilled oil at time t, r(t) and h(t) the radius and the height,
respectively, of the spill. Then

V (t) = π [r(t)]2 h(t), whence (15)

V ′(t) = 2πr(t)h(t)r′(t) + π [r(t)]2 h′(t). (16)

We are given that V ′(t) = 2000 cc/min for all t, and that at r(t0) = 100 cm, h(t0) = 0.5 cm,
and r′(t0) = 2.5 cm/min. Thus,

2000 = 2π · 100 · 0.5 · 2.5 + π · 1002 · h′(t0), or (17)

h′(t0) =
8− π
40π

∼ 0.03866 cm.min. (18)

3.2 Part b

Taking t = 0 to be the moment when the recovery device goes into action, we have

V ′(t) = 2000− 400
√
t. (19)

4



Thus V (t) has a critical point at t = 25, when V ′(t) = 0. Because V ′(t) > 0 for t < 25, but
V ′(t) < 0 when t > 25, it follows from the First Derivative Test that V (t) is maximal when
t = 25.

3.3 Part c

If there were 60, 000 cc of oil in the slick at the moment t = 0, when the recovery device
began to operate, then, by the Fundamental Theorem of Calculus, we must have

V (t) = V (0) +

∫ t

0
V ′(τ) dτ. (20)

From what we saw in Part b, above, we must therefore have

V (t) = 60000 +

∫ t

0

[
2000− 400

√
τ
]
dτ. (21)

Note: Evaluation of the integral is not required. For the curious,

60000 +

∫ t

0

[
2000− 400

√
τ
]
dτ = 60000 +

400

3

(
15− 2

√
t
)
t. (22)

4 Problem 4

4.1 Part a

Applying the Fundamental Theorem of Calculus to what we are given we find that

x(t) = −2 +
∫ t

0
v(τ) dτ. (23)

This means that x(3) = −10, x(5) = −7, and x(6) = −9. From the figure and the other
information given, we have x′(t) = v(t) < 0 for 0 < t < 3 and for 5 < t < 6, while
x′(t) > 0 for 3 < t < 5. Thus, x is decreasing when 0 ≤ t ≤ 3 and when 5 ≤ t ≤ 6, while
x is increasing when 3 ≤ t ≤ 5. thus, the particle is farthest to the left when t = 3, and its
position at that instant is x = −10.

Note: If function continuous on [a, b] is increasing (respectively, decreasing) on (a, b), it
is necessarily increasing (respectively, decreasing) on [a, b]. We should thus include the
endpoints. In the past, the readers haven’t taken this subtlety into account.
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4.2 Part b

Because x(0) = −2 and x(3) = −10, (see Part a, above), the particle moves through x = −8
at least once (leftward bound) when 0 < t < 3. Because x(3) = −10 and x(5) = −7 (see
Part a again) it moves through x = −8 again (rightward bound) at some time in the
interval (3, 5). Because x(5) = −7 and x(6) = −9 (see Part a again) it moves through −8
still again (now leftward bound) at some time in the interval (5, 6). The existence of these
times is guaranteed, in each case, because the differentiable function xmust be continuous
on [0, 6], and continuous functions have the intermediate value property2. That these three
instances are the only instances is guaranteed by the fact the xmust be monotonic on each
of the intervals [0, 3], [3, 5], and [5, 6] because velocity, the derivative of x, doesn’t change
sign at a point interior to any of these intervals.

4.3 Part c

Let σ(t) denote the particle’s speed at time t. Then

σ(t) = |v(t)|, so that (24)

[σ(t)]2 = [v(t)]2, and (25)
2σ(t)σ′(t) = 2v(t)v′(t), or, provided σ(t) 6= 0, (26)

σ′(t) =
v(t)

σ(t)
v′(t) =

v(t)v′(t)

|v(t)|
. (27)

The denominator of this last fraction is positive (σ(t) being non-zero), so the sign of σ′(t) is
the same as the sign of the product v(t)v′(t). On the interval (2, 3), we see from the graph
that v(t) < 0, but that v(t) is increasing, so that v′(t) > 0. It follows that v(t)v′(t) < 0 on
(2, 3), and, therefore, that speed is decreasing on (2, 3).

4.4 Part d

Acceleration if v′(t). Thus, acceleration is negative on intervals where v(t) is decreasing.
From the graph and what we have been given about it, acceleration is negative on [0, 1)
and on (4, 6], and only on those intervals.

2See the remarks in the Note to Problem 2, Part c.
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5 Problem 5

5.1 Part a

See Figure 1.
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Figure 1: Problem 5, Part a

5.2 Part b

We have

y′(x) =
y(x)− 1

x2
, together with (28)

y(2) = 0. (29)

We note that y(x) ≡ 1 gives a solution to (28), but that this solution doesn’t satisfy (29).
We may therefore discard this solution and assume that y(x) 6= 1. Under this assumption,
we may write (28) as

y′(x)

y(x)− 1
=

1

x2
, (30)
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from which we deduce that∫ x

2

y′(ξ)

y(ξ)− 1
dξ =

∫ x

2

dξ

ξ2
, or (31)

ln |y(ξ)− 1|
∣∣∣∣x
2

= −1

ξ

∣∣∣∣x
2

, which is equivalent to (32)

ln |y(x)− 1| − ln |y(2)− 1| = −1

x
+

1

2
. (33)

Applying (29) and noting that ln | − 1| = 0, we now see that

|y(x)− 1| = e1/2e−1/x. (34)

But, again from (29), we have y(2) − 1 = −1 < 0, so that y(x) < 1 for all x in its domain.
Thus, we can rewrite (34) as

1− y(x) = e1/2e−1/x, and we see that (35)

y(x) = 1−
√
e

e1/x
. (36)

5.3 Part c

lim
x→∞

y(x) = lim
x→∞

[
1−

√
e

e1/x

]
(37)

= 1−
√
e

limx→∞ e1/x
= 1−

√
e. (38)

6 Problem 6

6.1 Part a

f ′(e2) =
1− ln e2

(e2)2
=

1− 2

e4
= −e−4, (39)

so an equation of the tangent line to the curve y = f(x) at the point where x = e2 is

y = 2e−2 − e−4(x− e2). (40)
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6.2 Part b

f ′(x) = 0 when (1− lnx)/x2 = 0, so the x-coordinate of the critical point of f is x = e. We
note that f ′(x) > 0 when x < e, but that f ′(x) < 0 when x > e, and it follows from the
First Derivative Test that f has a local maximum at x = e.

6.3 Part c

from

f ′(x) =
1− lnx

x2
, we have (41)

f ′′(x) =
(−1/x) · x2 − (2x)(1− lnx)

(x2)2
=

2 lnx− 3

x3
. (42)

We note that f ′′(x) < 0 when x < e3/2 but that f ′′(x) > 0 when x > e3/2. The function f
therefore has an inflection point at x = e3/2.

6.4 d

lim
x→0+

f(x) = lim
x→0+

lnx

x
= lim

x→0+

[
1

x
· lnx

]
= −∞. (43)

because 1/x→∞ and lnx→ −∞ as x→ 0+.
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