AP Calculus 2010 AB (Form B) FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

June 5, 2017

1 Problem 1

1.1 Part a

The area of the region R is

$$
\begin{equation*}
\int_{0}^{2}[6-4 \ln (3-x)] d x \sim 6.81665 \tag{1}
\end{equation*}
$$

where we have carried out the integration numerically.
Note: The integral is elementary, but is most easily accomplished using integration by parts, which isn't on the AB syllabus. We have

$$
\begin{align*}
\int_{0}^{2}[6-4 \ln (3-x)] d x & =\left.6 x\right|_{0} ^{2}-\left.4(x-3) \ln (3-x)\right|_{0} ^{2}+4 \int_{0}^{2} d x=20-12 \ln 3 \tag{2}\\
& =4(5-3 \ln 3) . \tag{3}
\end{align*}
$$

1.2 Part b

The volume obtained by revolving R about the line $y=8$ is given by

$$
\begin{equation*}
\pi \int_{0}^{2}\left([8-4 \ln (3-x)]^{2}-4\right) d x \sim 168.17954 \tag{4}
\end{equation*}
$$

where we have once again integrated numerically.

Note: The integral is elementary, and symbolic integration is possible. However it is lengthy, and numerical integration saves a fair amount of time. Symbolic integration gives

$$
\begin{equation*}
\pi \int_{0}^{2}\left([8-4 \ln (3-x)]^{2}-4\right) d x=24 \pi[13-2(6-\ln 3) \ln 3] . \tag{5}
\end{equation*}
$$

1.3 Part c

The volume of this solid is

$$
\begin{equation*}
\int_{0}^{2}[6-4 \ln (3-x)]^{2} d x \sim 26.26660 \tag{6}
\end{equation*}
$$

Note: Once more, we have carried out the integration numerically, though a symbolic integration is possible. Once again, the numerical integration saves time. For the curious,

$$
\begin{equation*}
\int_{0}^{2}[6-4 \ln (3-x)]^{2} d x=16[20-3(6-\ln 3) \ln 3] . \tag{7}
\end{equation*}
$$

2 Problem 2

2.1 Part a

We need the values of x in the interval $[0.12,1]$ for which $g^{\prime}(x)=0$. A plot suggests that the zeros of $g^{\prime}(x)$ are $x \sim 0.17$ and $x \sim 0.36$. Numerical approximation then gives us $x \sim 0.16340$ and $x \sim 0.35943$. So the points where this curve has horizontal tangent lines are to be found at $x \sim 0.16340$ and at $x \sim 0.35943$.

2.2 Part b

The graph of g is concave downward on intervals where $g^{\prime \prime}(x)<0$. Numerical solution of the equation $g^{\prime \prime}(x)=0$ gives $x \sim 0.12946, x \sim 0.22273$ and $x=1$.
The function $g^{\prime \prime}$ is continuous on $[0.12,1]$, so it can change sign only at points where it vanishes. Numerical solution gives the relevant zeros of $g^{\prime \prime}(x)$ as $x \sim 0.12946, x \sim 0.22273$, and $x=1$. We have $g^{\prime \prime}(0.12) \sim 38.61>0, g^{\prime \prime}(0.19) \sim-18.0192<0$, and $g^{\prime \prime}(0.8) \sim$ $0.25935>0$. Thus, g is concave downward on $(0.12946,0.22273)$. Whether to include the endpoints in this interval depends on which of several definitions of concave downward one uses-and the readers know this.

2.3 Part c

The Fundamental Theorem of Calculus tells us that

$$
\begin{equation*}
g(x)=g(1)+\int_{1}^{x} g^{\prime}(\xi) d \xi=2+\int_{1}^{x} g^{\prime}(\xi) d \xi, \tag{8}
\end{equation*}
$$

it being given that $g(1)=2$. A numeric integration gives $g(0.3) \sim 1.54601$.
Direct evaluattion gives $g^{\prime}(0.3) \sim-0.47216$.
We can therefore write the equation of the tangent line at $(2, g(2))$, with three decimal places of accuracy as $y=1.546-0.472(x-0.3)$.

2.4 Part d

From what we have seen in Part b, above, the curve $y=g(x)$ must be concave upward on $(0.22273,1.000)$, so the tangent line at $x=0.3$ must lie below the curve throughout that interval-and, a fortiori, on the interval $(0.3,1)$.

3 Problem 3

3.1 Part a

The three-equal-interval midpoint Riemann sum that approximates the amount of water pumped into the pool during the time interval $0 \leq t \leq 12$ is

$$
\begin{equation*}
f(2) \cdot 4+f(6) \cdot 4+f(10) \cdot 4=660 \tag{9}
\end{equation*}
$$

Consequently, about 660 cubic feet of water was pumped into the pool in the given twelvehour interval.

3.2 Part b

If water leaked at the rate $R(t)=25 e^{-0.05 t}$ cubic feet per hour, then, during the interval $0 \leq t \leq 12$, the amount of water lost was, in cubic feet,

$$
\begin{equation*}
25 \int_{0}^{12} e^{-t / 20} d t=-\left.500 e^{-t / 20}\right|_{0} ^{12}=500\left(1-e^{-3 / 5}\right) \tag{10}
\end{equation*}
$$

3.3 Part c

The total amount of water, in cubic feet, in the pool at the end of the twelve-hour period is thus about

$$
\begin{equation*}
1000+660-500\left(1-e^{-3 / 5}\right) \sim 1434.40582 \tag{11}
\end{equation*}
$$

To the nearest cubic foot, at time $t=12$ the pool contains about 1434 cubic feet of water.

3.4 Part d

The rate at which the volume of water in the pool is increasing is $P(t)-R(t)$ cubic feet per hour. When $t=8$ this rate is $60-25 e^{-2 / 5} \sim 43.24200$ cubic feet per hour.

The relationship between the height, h, of water in the tank and the volume, V, of water in the tank is $V=\pi r^{2} h=144 \pi h$. Thus,

$$
\begin{align*}
h & =\frac{V}{144 \pi}, \text { and } \tag{12}\\
\frac{d h}{d t} & =\frac{1}{144 \pi} \frac{d V}{d t} . \tag{13}
\end{align*}
$$

Setting $t=8$ in this latter equation gives (from what we have seen above)

$$
\begin{equation*}
\left.\frac{d h}{d t}\right|_{t=8}=\frac{1}{144 \pi}\left(60-25 e^{-2 / 5}\right) \sim 0.09558 \text { feet per hour. } \tag{14}
\end{equation*}
$$

4 Problem 4

4.1 Part a

The squirrel's direction changes when its velocity changes sign. That happens only at those values of t where the graph of velocity crosses the t-axis. There are two such places: $t=9$ and $t=15$.

4.2 Part b

The squirrel's distance from Building A at time T is the integral of its velocity from 0 to T. This integral is the algebraic sum of the signed areas associated with the appropriate
regions between the velocity curve and the t-axis, taking the regions above the axis to have positive area and assigning negative areas to the regions below the t-axis. The area under the velocity curve on the interval $[0,9]$ is clearly larger than the area below the axis on the interval $[9,15]$, and this latter area is clearly smaller than the area above the axis on the interval $[15,18]$. Thus, the squirrel is farthest from Building A when $t=9$, and this distance is the area enclosed by the trapezoid whose vertices are $(0,0),(2,20),(7,20)$, and $(9,0)$. The area of this trapezoid is 140 , so at time $t=9$, the squirrel is 140 feet from Building A and is closer at all other times.

4.3 Part c

Summing the magnitudes of the signed areas, we find that the squirrel has traveled a total distance of $140+50+25=215$ feet.

4.4 Part d

On the interval $7<t<10$, the squirrel's velocity is given by a line, of slope

$$
\begin{equation*}
\frac{20-(-10)}{7-10}=-10 \tag{15}
\end{equation*}
$$

which passes through the point $(7,20)$, and therefore has equation

$$
\begin{equation*}
v(t)=20-10(t-7)=90-10 t \text { feet per second. } \tag{16}
\end{equation*}
$$

For the squirrel's acceleration during this interval, we have

$$
\begin{equation*}
a(t)=v^{\prime}(t)=-10 \text { feet per second per second. } \tag{17}
\end{equation*}
$$

For distance, $x(t)$, from Building A, we have, when $7 \leq t \leq 10$,

$$
\begin{align*}
x(t) & =x(7)+\int_{7}^{t} v(\tau) d \tau \tag{18}\\
& =120+\int_{7}^{t}(90-10 \tau) d \tau \tag{19}\\
& =-5 t^{2}+90 t-265 \text { feet. } \tag{20}
\end{align*}
$$

5 Problem 5

5.1 Part a

See Figure 1.

Figure 1: Problem 5, Part a

5.2 Part b

The points in the plane for which $\frac{d y}{d x}=-1$ are those points in the domain of the fraction $(x+1) / y$ for which the value of the fraction is -1 . The set of all such points is the set of all (x, y) for which $x+1=-y$ and $y \neq 0$. This is the set of all but one of the points on the straight line of slope -1 that passes through the point $(0,-1)$. The exceptional point is the one with coordinates $(-1,0)$.

5.3 Part c

Solving the initial value problem $y^{\prime}=(x+1) / y ; y(0)=-2$, we suppose that the solution is $y=f(x)$. Then

$$
\begin{align*}
f^{\prime}(x) & =\frac{x+1}{f(x)}, \text { or } \tag{21}\\
f(x) \cdot f^{\prime}(x) & =x+1 . \tag{22}
\end{align*}
$$

Now we integrate both sides of (22) from 0 to x, so that

$$
\begin{align*}
\int_{0}^{x} f(t) f^{\prime}(t) d t & =\int_{0}^{x}(t+1) d t \tag{23}\\
\left.\frac{1}{2}[f(t)]^{2}\right|_{0} ^{x} & =\left.\left(\frac{t^{2}}{2}+t\right)\right|_{0} ^{x} \tag{24}\\
{[f(x)]^{2}-4 } & =x^{2}+2 x \tag{25}
\end{align*}
$$

Solving for $f(x)$ and remembering that $f(0)=-2<0$, we obtain

$$
\begin{equation*}
f(x)=-\sqrt{x^{2}+2 x+4} . \tag{26}
\end{equation*}
$$

6 Problem 6

6.1 Part a

The particle R moves to the right when $r^{\prime}(t)>0$. But

$$
\begin{align*}
r^{\prime}(t) & =3 t^{2}-12 t+9 \tag{27}\\
& =3(t-1)(t-3), \tag{28}
\end{align*}
$$

and this is positive only when the factors $(t-1)$ and $(t-3)$ have the same sign-or when either $t<1$ or $t>3$. Thus, for $0 \leq t \leq 6$, the particle R moves to the right when $0 \leq t<1$ and when $3<t \leq 6$.

6.2 Part b

The two particles move in th opposite directions when the derivatives $p^{\prime}(t)$ and $r^{\prime}(t)$ have opposite signs, or when the product $p^{\prime}(t) r^{\prime}(t)<0$. But

$$
\begin{equation*}
p^{\prime}(t) r^{\prime}(t)=-\frac{\pi}{2} \cdot 3(t-1)(t-3) \sin \left(\frac{\pi t}{4}\right), \tag{29}
\end{equation*}
$$

and, $0 \leq t \leq 6$ being given, this product is negative on $[0,1)$ and on $(3,4)$. We conclude that the two particles are moving in opposite directions both when $0 \leq t<1$ and when $3<t<4$.

6.3 Part c

We have

$$
\begin{equation*}
p^{\prime \prime}(t)=-\frac{\pi^{2}}{8} \cos \left(\frac{\pi t}{4}\right) \tag{30}
\end{equation*}
$$

Thus, acceleration when $t=3$ is

$$
\begin{equation*}
p^{\prime \prime}(3)=\left(-\frac{\pi^{2}}{8}\right) \cdot\left(-\frac{\sqrt{2}}{2}\right)>0 \tag{31}
\end{equation*}
$$

The acceleration is positive, so velocity is increasing when $t=3$.

