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1 Problem 1

1.1 Part a

The area of the region R is ∫ 2

0
[6− 4 ln(3− x)] dx ∼ 6.81665, (1)

where we have carried out the integration numerically.

Note: The integral is elementary, but is most easily accomplished using integration by
parts, which isn’t on the AB syllabus. We have∫ 2

0
[6− 4 ln(3− x)] dx = 6x

∣∣∣∣2
0

− 4(x− 3) ln(3− x)
∣∣∣∣2
0

+ 4

∫ 2

0
dx = 20− 12 ln 3 (2)

= 4(5− 3 ln 3).. (3)

1.2 Part b

The volume obtained by revolving R about the line y = 8 is given by

π

∫ 2

0

(
[8− 4 ln(3− x)]2 − 4

)
dx ∼ 168.17954, (4)

where we have once again integrated numerically.
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Note: The integral is elementary, and symbolic integration is possible. However it is
lengthy, and numerical integration saves a fair amount of time. Symbolic integration
gives

π

∫ 2

0

(
[8− 4 ln(3− x)]2 − 4

)
dx = 24π [13− 2(6− ln 3) ln 3] . (5)

1.3 Part c

The volume of this solid is∫ 2

0
[6− 4 ln(3− x)]2 dx ∼ 26.26660. (6)

Note: Once more, we have carried out the integration numerically, though a symbolic
integration is possible. Once again, the numerical integration saves time. For the curi-
ous, ∫ 2

0
[6− 4 ln(3− x)]2 dx = 16 [20− 3(6− ln 3) ln 3] . (7)

2 Problem 2

2.1 Part a

We need the values of x in the interval [0.12, 1] for which g′(x) = 0. A plot suggests that
the zeros of g′(x) are x ∼ 0.17 and x ∼ 0.36. Numerical approximation then gives us
x ∼ 0.16340 and x ∼ 0.35943. So the points where this curve has horizontal tangent lines
are to be found at x ∼ 0.16340 and at x ∼ 0.35943.

2.2 Part b

The graph of g is concave downward on intervals where g′′(x) < 0. Numerical solution
of the equation g′′(x) = 0 gives x ∼ 0.12946, x ∼ 0.22273 and x = 1.

The function g′′ is continuous on [0.12, 1], so it can change sign only at points where it
vanishes. Numerical solution gives the relevant zeros of g′′(x) as x ∼ 0.12946, x ∼ 0.22273,
and x = 1. We have g′′(0.12) ∼ 38.61 > 0, g′′(0.19) ∼ −18.0192 < 0, and g′′(0.8) ∼
0.25935 > 0. Thus, g is concave downward on (0.12946, 0.22273). Whether to include the
endpoints in this interval depends on which of several definitions of concave downward
one uses—and the readers know this.
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2.3 Part c

The Fundamental Theorem of Calculus tells us that

g(x) = g(1) +

∫ x

1
g′(ξ) dξ = 2 +

∫ x

1
g′(ξ) dξ, (8)

it being given that g(1) = 2. A numeric integration gives g(0.3) ∼ 1.54601.

Direct evaluattion gives g′(0.3) ∼ −0.47216.

We can therefore write the equation of the tangent line at (2, g(2)), with three decimal
places of accuracy as y = 1.546− 0.472(x− 0.3).

2.4 Part d

From what we have seen in Part b, above, the curve y = g(x) must be concave upward on
(0.22273, 1.000), so the tangent line at x = 0.3 must lie below the curve throughout that
interval—and, a fortiori, on the interval (0.3, 1).

3 Problem 3

3.1 Part a

The three-equal-interval midpoint Riemann sum that approximates the amount of water
pumped into the pool during the time interval 0 ≤ t ≤ 12 is

f(2) · 4 + f(6) · 4 + f(10) · 4 = 660. (9)

Consequently, about 660 cubic feet of water was pumped into the pool in the given twelve-
hour interval.

3.2 Part b

If water leaked at the rate R(t) = 25e−0.05t cubic feet per hour, then, during the interval
0 ≤ t ≤ 12, the amount of water lost was, in cubic feet,

25

∫ 12

0
e−t/20 dt = −500e−t/20

∣∣∣∣12
0

= 500(1− e−3/5). (10)
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3.3 Part c

The total amount of water, in cubic feet, in the pool at the end of the twelve-hour period
is thus about

1000 + 660− 500(1− e−3/5) ∼ 1434.40582. (11)

To the nearest cubic foot, at time t = 12 the pool contains about 1434 cubic feet of wa-
ter.

3.4 Part d

The rate at which the volume of water in the pool is increasing is P (t) − R(t) cubic feet
per hour. When t = 8 this rate is 60− 25e−2/5 ∼ 43.24200 cubic feet per hour.

The relationship between the height, h, of water in the tank and the volume, V , of water
in the tank is V = πr2h = 144πh. Thus,

h =
V

144π
, and (12)

dh

dt
=

1

144π

dV

dt
. (13)

Setting t = 8 in this latter equation gives (from what we have seen above)

dh

dt

∣∣∣∣
t=8

=
1

144π
(60− 25e−2/5) ∼ 0.09558 feet per hour. (14)

4 Problem 4

4.1 Part a

The squirrel’s direction changes when its velocity changes sign. That happens only at
those values of t where the graph of velocity crosses the t-axis. There are two such places:
t = 9 and t = 15.

4.2 Part b

The squirrel’s distance from Building A at time T is the integral of its velocity from 0 to
T . This integral is the algebraic sum of the signed areas associated with the appropriate
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regions between the velocity curve and the t-axis, taking the regions above the axis to
have positive area and assigning negative areas to the regions below the t-axis. The area
under the velocity curve on the interval [0, 9] is clearly larger than the area below the axis
on the interval [9, 15], and this latter area is clearly smaller than the area above the axis
on the interval [15, 18]. Thus, the squirrel is farthest from Building A when t = 9, and
this distance is the area enclosed by the trapezoid whose vertices are (0, 0), (2, 20), (7, 20),
and (9, 0). The area of this trapezoid is 140, so at time t = 9, the squirrel is 140 feet from
Building A and is closer at all other times.

4.3 Part c

Summing the magnitudes of the signed areas, we find that the squirrel has traveled a total
distance of 140 + 50 + 25 = 215 feet.

4.4 Part d

On the interval 7 < t < 10, the squirrel’s velocity is given by a line, of slope

20− (−10)
7− 10

= −10, (15)

which passes through the point (7, 20), and therefore has equation

v(t) = 20− 10(t− 7) = 90− 10t feet per second. (16)

For the squirrel’s acceleration during this interval, we have

a(t) = v′(t) = −10 feet per second per second. (17)

For distance, x(t), from Building A, we have, when 7 ≤ t ≤ 10,

x(t) = x(7) +

∫ t

7
v(τ) dτ (18)

= 120 +

∫ t

7
(90− 10τ) dτ (19)

= −5t2 + 90t− 265 feet. (20)

5 Problem 5

5.1 Part a

See Figure 1.
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Figure 1: Problem 5, Part a

5.2 Part b

The points in the plane for which
dy

dx
= −1 are those points in the domain of the fraction

(x + 1)/y for which the value of the fraction is −1. The set of all such points is the set of
all (x, y) for which x + 1 = −y and y 6= 0. This is the set of all but one of the points on
the straight line of slope −1 that passes through the point (0,−1). The exceptional point
is the one with coordinates (−1, 0).

5.3 Part c

Solving the initial value problem y′ = (x+ 1)/y; y(0) = −2, we suppose that the solution
is y = f(x). Then

f ′(x) =
x+ 1

f(x)
, or (21)

f(x) · f ′(x) = x+ 1. (22)
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Now we integrate both sides of (22) from 0 to x, so that∫ x

0
f(t) f ′(t) dt =

∫ x

0
(t+ 1) dt, (23)

1

2
[f(t)]2

∣∣∣∣x
0

=

(
t2

2
+ t

) ∣∣∣∣x
0

, (24)

[f(x)]2 − 4 = x2 + 2x. (25)

Solving for f(x) and remembering that f(0) = −2 < 0, we obtain

f(x) = −
√
x2 + 2x+ 4. (26)

6 Problem 6

6.1 Part a

The particle R moves to the right when r′(t) > 0. But

r′(t) = 3t2 − 12t+ 9 (27)
= 3(t− 1)(t− 3), (28)

and this is positive only when the factors (t− 1) and (t− 3) have the same sign—or when
either t < 1 or t > 3. Thus, for 0 ≤ t ≤ 6, the particle R moves to the right when 0 ≤ t < 1
and when 3 < t ≤ 6.

6.2 Part b

The two particles move in th opposite directions when the derivatives p′(t) and r′(t) have
opposite signs, or when the product p′(t)r′(t) < 0. But

p′(t)r′(t) = −π
2
· 3(t− 1)(t− 3) sin

(
πt

4

)
, (29)

and, 0 ≤ t ≤ 6 being given, this product is negative on [0, 1) and on (3, 4). We conclude
that the two particles are moving in opposite directions both when 0 ≤ t < 1 and when
3 < t < 4.
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6.3 Part c

We have

p′′(t) = −π
2

8
cos

(
πt

4

)
, (30)

Thus, acceleration when t = 3 is

p′′(3) =

(
−π

2

8

)
·

(
−
√
2

2

)
> 0. (31)

The acceleration is positive, so velocity is increasing when t = 3.
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