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1 Problem 1

1.1 Part a

At 6 AM,
∫ 6
0 7t ecos t dt cubic feet of snow have accumulated. Integrating numerically, we

find that 142.17469 cubic feet have accumulated by 6 AM.

1.2 Part b

At 8 AM, snow is falling at the rate of 56ecos 8 cubic feet per hour, but Janet is removing it
at the rate of 108 cubic feet per hour. So at 8 AM, the rate of change of the volume of snow
on the driveway is 56ecos 8 − 108 ∼ −59.58297 cubic feet per hour.

1.3 Part c

We have

h(t) =


0 when 0 ≤ t ≤ 6.

125(t− 6) when 6 ≤ t < 7.

125 + 108(t− 7) when 7 ≤ t ≤ 9.

(1)

1.4 Part d

7
∫ 9
0 te

cos t dt − 341 is the total amount, in cubic feet, of snow on the driveway at t = 9.
Numeric integration gives this as 26.33461 cubic feet of snow at 9 AM.
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2 Problem 2

2.1 Part a

At t = 6, the approximate rate at which entries were being made is given by the frac-
tion

E(7)− E(5)

7− 5
=

21− 13

2
= 4 hundred entries per hour. (2)

2.2 Part b

The trapezoidal approximation is

1

8

∫ 8

0
E(t) dt ∼ 1

16
[(4 + 0) · 2 + (13 + 4) · 3 + (21 + 13) · 2 + (23 + 21) · 1 =

171

16
. (3)

This means that the average rate of deposits at any time during the 8-hour period was
about 171/16 hundreds of entries per hour.

2.3 Part c

The number U(t), of entries not processed at a given time t, 8 ≤ t ≤ 12, is given by

U(t) = 2300− 100

∫ t

8
P (τ) dτ, (4)

where P (t) = t3 − 30t2 + 298t− 976. Thus,

U(t) = 2300− 100

(
1

4
τ4 − 10τ3 + 149τ2 − 976τ

) ∣∣∣∣t
8

(5)

= −2tt2 + 1000t3 − 14900t2 + 97600t− 234500., (6)

and

U(12) = 700. (7)

According to this model, 700 entries remain unprocessed at midnight.
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2.4 Part d

We want the maximal rate at which entries were being processed in the time interval
[8, 12]. Such a maximum must lie at a critical point or at an end-point. The critical points
are the solutions of the equation P ′(t) = 3t2 − 60t+ 298 = 0 or

t =
30±

√
6

3
. (8)

Thus, the critical points are at t1 and t2, where t1 ∼ 9.18350 and t2 ∼ 10.81650. We find
that

P (8) = 0; (9)
P (t1) ∼ 5.08866; (10)
P (t2) ∼ 2.91134; and (11)
P (12) = 8. (12)

The largest of these numbers must be the maximum, so the entries were being processed
most quickly at midnight.

3 Problem 3

3.1 Part a

From t = 0 to t = 2, the rate at which people arrive appears to increase linearly from 1000

per hour to 1200 per hour. The total number that arrive during this period is
∫ 2
0 r(τ) dτ ,

which is about 1

�2
(1000 + 1200) · �2 = 2200 people. From t = 2 to t = 3, the rate at which

people arrive appears to decrease linearly from 1200 per hour to 800 per hour. The total
number that arrive during this period is

∫ 3
2 r(τ) dτ , which is about 1

2(1200+ 800)(3− 2) =
1000. Consequently, the total number of arrivals for 0 ≤ t ≤ 3 is about

2200 + 1000 = 3200. (13)

3.2 Part b

During the period from t = 2 to t = 3, the arrival rate exceeds 800 people per hour, while
people move onto the ride at the rate of 800 people per hour. Consequently, the number
of people waiting in line is increasing during this period.
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3.3 Part c

Prior to the time t = 3, r(t) > 800, and the arrival rate exceeds the processing rate of 800
people per hour—meaning that the length of the line increases during this period. When
t > 3, however, r(t) < 800, and the length of the line decreases. Consequently, the line is
longest when t = 3.

3.4 Part d

In order to find the earliest time t at which there is no longer a line for the ride, we must
find the smallest positive value of t that satisfies the equation

700 +

∫ t

0
f(τ) dτ = 800t. (14)

4 Problem 4

4.1 Part a

The area of R is ∫ 9

0

[
6− 2

√
x
]
dx =

[
6x− 4

3
x3/2

] ∣∣∣∣9
0

= 18. (15)

4.2 Part b

The volume of the solid generated by revolving R about the line y = 7 is given by

π

∫ 9

0

[(
7−
√
x
)2 − 1

]
dx = π

∫ 9

0

(
48− 14

√
x+ x

)
dx. (16)

Note: Evaluation of the integral is not required. However,

π

∫ 9

0

(
48− 14

√
x+ x

)
dx = π

(
48x− 14 · 2

3
x3/2 +

x2

2

) ∣∣∣∣9
0

(17)

= π

(
48 · 9− 14 · 2

3
· 27 + 81

2

)
=

441

2
π. (18)
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4.3 Part c

The volume of this solid is
3

16

∫ 6

0
y4 dy.

Note: Evaluation of this integral isn’t required either. However

3

16

∫ 6

0
y4 dy =

3

16
· y

5

5

∣∣∣∣6
0

=
1458

5
(19)

5 Problem 5

5.1 Part a

By the Fundamental Theorem of Calculus,

g(3) = g(0) +

∫ 3

0
g′(x) dx = 5 + π +

3

2
=

13

2
+ π. (20)

Similarly,

g(−2) = 5 +

∫ −2
0

g′(x) dx = 5− π. (21)

5.2 Part b

The inflection points of a function such as this one must lie at the relative extrema of its
derivative. These lie at x = 2 (where the derivative changes from a decreasing function
to an increasing function and concavity changes from downward to upward as we move
from left to right) and at x = 3 (where the derivative changes from an increasing function
to a decreasing function and concavity changes from upward to downward as we move
from left to right).

5.3 Part c

The critical points of h are the zeros of h′(x) = g′(x) − x. Thus, h has a critical point at
each x-value where the line y = x touches the graph given for g′(x). There are two such
points: x =

√
2 and x = 3. We note that x < g′(x) when x <

√
2, and that x ≥ g′(x) when

x >
√
2. This means that h′(x) > 0 for x <

√
2, while h′(x) ≤ 0 when x >

√
2. It follows

from the First Derivative Test that h has a local maximum at x =
√
2.
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On any small interval centered at x = 3, we see that g′(x) ≤ x, or h′(x) ≤ 0. Hence, x = 3
gives neither a local maximum nor a local minimum for h—also by the First Derivative
Test.

6 Problem 6

6.1 Part a

The solution, y = f(x) of y′ = xy3 that passes through the point (1, 2) has there a tangent
line whose slope is y′

∣∣
(1,2)

= 1 · (2)3 = 9. An equation for that line is therefore

y = 2 + 8(x− 1). (22)

6.2 Part b

Using the tangent line at (1, 2) to approximate y = f(x) through that point yields

f(1.1) ∼ 2 + 8 · (1.1− 1) = 2.8 (23)

as an approximate value for f(1.1) on the curve when x = 1.1.

Because f is a solution of y′ = yx3,

y′′ =
d

dx
(y′) (24)

=
d

dx

(
yx3
)

(25)

= y′ · x3 + y · 3x2 (26)

= (yx3) · x3 + 3yx2 = yx2(x4 + 3). (27)

But y = f(x) > 0 when 1 < x < 1.1, and both x2 and x4 + 3 are positive when 1 <
x < 1.1, so that y′′ = y · x2 · (x4 + 3) > 0 when 1 < x < 1.1. This means that the curve
y = f(x) is concave upward, so that it lies above its tangent line in that region. Hence, the
approximation we have just given is an underestimate for f(1.1).

6



6.3 Part c

We have

f ′(x) = x[f(x)]3, so that f(x) ≡ 0 or (28)
f ′(x)

[f(x)]3
= x. (29)

The zero solution doesn’t satisfy f(1) = 2 so we will integrate both sides of (29) from 1 to
x, making use of the fact that f(1) = 2 > 0 and using the continuity (which follows from
its differentiability) of f to know that we can keep x close enough to 1 that we can be sure
that f(t) > 0 for all t between 1 and x. This gives∫ x

1

f ′(t)

[f(t)]3
dt =

∫ x

1
t dt; (30)

− 1

�2[f(t)]2

∣∣∣∣x
1

=
t2

�2

∣∣∣∣x
1

; (31)

1

4
− 1

[f(x)]2
= x2 − 1; (32)

[f(x)]2 =
4

5− 4x2
. (33)

The values of f(x) must be positive, at least when x is near 1, so we take the positive
square root, and we arrive at the solution

f(x) =
2√

5− 4x2
. (34)

Note: We could have solved Part b of this problem by making a forward reference to this
solution and actually computing f(1.1) = 5. And, yes: the approximation of Part b is
pretty miserable.
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