AP Calculus 2011 AB, Form B, FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

May 31, 2017

1 Problem 1

1.1 Part a

According to the model, the height of the water in the can at the end of the 60-day period is

$$
\begin{align*}
\int_{0}^{60}[2 \sin (0.03 t)+1.5] d t & =\left.\left[-\frac{2}{0.03} \cos (0.03 t)+1.5 t\right]\right|_{0} ^{60} \tag{1}\\
& =\left(-\frac{200}{3} \cos (9 / 5)+90\right)+\frac{200}{3}=\left[\frac{470}{3}-\frac{200}{3} \cos \left(\frac{9}{5}\right)\right] \mathrm{mm} \tag{2}
\end{align*}
$$

1.2 Part b

The average rate of change in the height of water in the can over the 60 -day period is

$$
\begin{equation*}
\frac{1}{60} \int_{0}^{60} S^{\prime}(t) d t=\frac{1}{60}\left[\frac{470}{3}-\frac{200}{3} \cos \left(\frac{9}{5}\right)\right]=\left[\frac{47}{18}-\frac{10}{9} \cos \left(\frac{9}{5}\right)\right] \mathrm{mm} / \text { day }, \tag{3}
\end{equation*}
$$

where we have inserted the value of the integral from equation (2).

1.3 Part c

The volume $V(t)$ of water in the can at time t is given by

$$
\begin{align*}
V(t) & =100 \pi S(t), \text { so } \tag{4}\\
V^{\prime}(t) & =100 \pi S^{\prime}(t) . \tag{5}
\end{align*}
$$

Consequently,

$$
\begin{equation*}
V^{\prime}(7)=100 \pi S^{\prime}(7)=150 \pi+200 \pi \sin \left(\frac{21}{100}\right) \text { cubic } \mathrm{mm} / \mathrm{sec} . \tag{6}
\end{equation*}
$$

1.4 Part d

We have $M^{\prime}(t)=\frac{1}{400}\left(9 t^{2}-60 t+330\right)$. Using $S^{\prime}(t)$ as given, we find that

$$
\begin{align*}
M^{\prime}(0)-S^{\prime}(0) & =\frac{33}{40}-\frac{3}{2}=-\frac{27}{40}<0, \text { while } \tag{7}\\
D(60) & =M^{\prime}(60)-S^{\prime}(60)=\frac{2853}{40}-2 \sin \left(\frac{9}{5}\right)>\frac{2853}{40}-2>69>0 . \tag{8}
\end{align*}
$$

Because D is a continous function on $[0,60]$, it follows from the Intermediate Value Theorem that there is a time $t_{0} \in(0,60)$ such that $D\left(t_{0}\right)=0$, which is to say that $M^{\prime}\left(t_{0}\right)=$ $S^{\prime}\left(t_{0}\right)$, or the two rates are the same.

2 Problem 2

2.1 Part a

We have

$$
\begin{align*}
\lim _{t \rightarrow 5^{-}} r(t) & =\lim _{t \rightarrow 5^{-}} \frac{600 t}{t+3}=\frac{3000}{8}=357, \text { while } \tag{9}\\
\lim _{t \rightarrow 5^{+}}\left[1000 e^{-0.2 t}\right] & \sim 367.9 \tag{10}
\end{align*}
$$

The two one-sided limits are different, so the function r has no limit at $t=5$. The function is therefore not continuous at $t=5$.

2.2 Part b

The average rate at which the tank drains over the interval $[0,8]$ is given by the integral

$$
\begin{equation*}
\frac{1}{8} \int_{0}^{8} r(t) d t=\frac{1}{8}\left[\int_{0}^{5} \frac{600 t}{t+3} d t+\int_{5}^{8} 1000 e^{-0.2 t} d t\right] \sim 258.05274 \tag{11}
\end{equation*}
$$

which we have evaluated by numerical integration. The average rate of drainage is thus 258.05274 liters per hour.

2.3 Part c

We have

$$
\begin{align*}
r^{\prime}(t) & =\frac{1800}{(t+3)^{2}}, \text { so that } \tag{12}\\
r^{\prime}(3) & =\frac{1800}{6^{2}}=50 \text { liters per hour per hour. } \tag{13}
\end{align*}
$$

This is the rate at which the rate of drainage is changing when $t=3$.

2.4 Part d

The time A at which the amount of water in the tank is 9000 liters must satisfy the equation

$$
\begin{equation*}
9000+\int_{0}^{A} r(t) d t=12000 \tag{14}
\end{equation*}
$$

3 Problem 3

3.1 Part a

The area of the pictured region R is

$$
\begin{equation*}
\int_{0}^{4} \sqrt{x} d x+\int_{4}^{6}(6-x) d x=\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{4}+\left.\left(6 x-\frac{x^{2}}{2}\right)\right|_{4} ^{6}=\frac{16}{3}+2=\frac{22}{3} \tag{15}
\end{equation*}
$$

3.2 Part b

A cross section of this solid perpendicular to the y-axis at $y=t$ is a rectangle whose height is $2 t$ and whose base extends from the curve $x=y^{2}$ to the curve $x=6-y$. The area of such a cross section is therefore $2 t\left[(6-t)-t^{2}\right]$, so the required integral is $2 \int_{0}^{2}\left[6 t-t^{2}-t^{3}\right] d t$.

Note: Evaluation of this integral is not required. For the curious,

$$
\begin{align*}
2 \int_{0}^{2}\left[6 t-t^{2}-t^{3}\right] d t & =\left.2\left[3 t^{2}-\frac{1}{3} t^{3}-\frac{1}{4} t^{4}\right]\right|_{0} ^{2} \tag{16}\\
& =2\left[12-\frac{8}{3}-4\right]=\frac{32}{3} \tag{17}
\end{align*}
$$

3.3 Part c

The slope of the line $y=6-x$ is -1 , so we seek a point on the curve $y=\sqrt{x}$ where $y^{\prime}=1$. But $y^{\prime}=\frac{1}{2} x^{-1 / 2}=1$ when $x^{-1 / 2}=2$, or, equivalently, when $x=\frac{1}{4}$. The point P therefore has coordinates $\left(\frac{1}{4}, \frac{1}{2}\right)$.

4 Problem 4

4.1 Part a

The function f has a single critical point in $(0, \infty)$, where $f^{\prime}(x)=(4-x) x^{-3}=0$. This critical point is at $x=4$. Now $f^{\prime}(x)>0$ for $x \in(0,4)$, while $f^{\prime}(x)<0$ when $x \in$ $(4, \infty)$. (A continuous function that is increasing (respectively, decreasing) on an open interval is necessarily increasing (respectively, decreasing) on the closure of that interval. Consequently, f is increasing on $(0,4]$ and decreasing on $[4, \infty)$. It follows that f has a relative maximum at $x=4$.

4.2 Part b

If $f^{\prime}(x)=(4-x) x^{-3}$, then

$$
\begin{equation*}
f^{\prime \prime}(x)=-x^{-3}-3(4-x) x^{-4}=2(x-6) x^{-4} . \tag{18}
\end{equation*}
$$

Consequently, $f^{\prime \prime}(x)<0$ when $x \in(0,6)$ and $f^{\prime \prime}(x)>0$ when $x \in(6, \infty)$. Therefore, f is concave upward on $(6, \infty)$ and f is concave downward on $(0,6)$. (Note: whether 6 belongs in these intervals of concavity depends on the definition of "upward [downward] concavity" we adopt. Texts vary in this respect.)

4.3 Part c

By the Fundamental Theorem of Calculus,

$$
\begin{align*}
f(x) & =f(1)+\int_{1}^{x} f^{\prime}(t) d t=2+\int_{1}^{x}\left[4 t^{-3}-t^{-2}\right] d t \tag{19}\\
& =2+\left.\left(-2 t^{-2}+t^{-1}\right)\right|_{1} ^{x} \tag{20}\\
& =2+\left(-2 x^{-2}+x^{-1}\right)-(-1) \tag{21}\\
& =3-2 x^{-2}+x^{-1} . \tag{22}
\end{align*}
$$

5 Problem 5

5.1 Part a

Ben's acceleration at time $t=5$ is approximately

$$
\begin{equation*}
\frac{v(10)-v(0)}{10-0}=\frac{2.3-2.0}{10}=0.03 \text { meters per second per second. } \tag{23}
\end{equation*}
$$

5.2 Part b

The integral $\int_{0}^{60}|v(t)| d t$ is the integral of Ben's speed. It measures the total distance Ben has traveled over the interval $0 \leq t \leq 60$. We have

$$
\begin{equation*}
\int_{0}^{60}|v(t)| d t \sim 2.0 \cdot(10-0)+2.3 \cdot(40-10)+2.5 \cdot(60-4)=139 \tag{24}
\end{equation*}
$$

so the total distance Ben traveled during this minute is about 139 meters.

5.3 Part c

We have

$$
\begin{equation*}
\frac{B(60)-B(40)}{60-40}=\frac{49-9}{60-40}-\frac{40}{20}=2 . \tag{25}
\end{equation*}
$$

We may apply the Mean Value Theorem here, because we are given that B is a twice differentiable function, and this latter fact guarantees that B is continuous on $[40,60]$ and differentiable on $(40,60)$-which are the hypotheses of the Mean Value Theorem. Thus, there must be a time $t_{0} \in(40,60)$ when $v\left(t_{0}\right)=B^{\prime}\left(t_{0}\right)=2$.

Note: We are cheating a bit, but this has to be what the examiners expected. We haven't been told just where B is twice-differentiable or what the domain of B is, and it's not really clear what it would mean for $B^{\prime \prime}(60)$ to exist if the domain of B is $[0,60]$. We adopt the convention that the problem takes differentiability at an end-point to be the appropriate one-sided differentiability there; if we don't do so, our conclusion that B is continuous at $t=60$ is unsupportable.

5.4 Part d

From $L^{2}=144+B^{2}$, we find that $2 L L^{\prime}=2 B B^{\prime}=2 B v$. Thus, when $t=40$ we have

$$
\begin{equation*}
2 L L^{\prime}=2 B v=\not 2 \cdot 9 \cdot \frac{5}{\not 2}=45 . \tag{26}
\end{equation*}
$$

However, when $t=40$, we also have $L^{2}=144+81=225$, so that $L=15$. Thus, at $t=40$, $45=2 L L^{\prime}=2 \cdot 15 \cdot L^{\prime}$, and $L^{\prime}=\frac{45}{30}=\frac{3}{2}$ meters per second.

6 Problem 6

6.1 Part a

We note first that $\int_{-2 \pi}^{4 \pi} g(x) d x$ is the area of the pictured triangle, or $\frac{1}{2} \cdot 6 \pi \cdot \not 2 \pi=6 \pi^{2}$. On the other hand,

$$
\begin{equation*}
\int_{-2 \pi}^{4 \pi} \cos \frac{x}{2} d x=\left.2 \sin \frac{x}{2}\right|_{-2 \pi} ^{4 \pi}=2 \sin (2 \pi)-2 \sin (-\pi)=0 . \tag{27}
\end{equation*}
$$

Consequently, $\int_{-2 \pi}^{4 \pi} f(x) d x=6 \pi^{2}$.
Note: We can also use the symmetries of the cosine function to compute the integral that appear in (27). Doing the calculation above is probably faster than explaining how the symmetries yield a zero integral.

6.2 Part b

We have $f^{\prime}(x)=1+\frac{1}{2} \sin \frac{x}{2}$ when $-2 \pi<x<0 ; f^{\prime}(x)=-\frac{1}{2}+\frac{1}{2} \sin \frac{x}{2}$ when $0<x<4 \pi$. Thus $f^{\prime}(\pi)=0$ and $f^{\prime}(x)$ is undefined when $x=0$ because g is not differentiable at $x=0$. (This is because $g_{-}^{\prime}(0)=-1$ while $g_{+}^{\prime}(0)=-\frac{1}{2}$, both of which are easily seen from the definition of g.) These give the only two critical points of f.

6.3 Part c

If $h(x)=\int_{0}^{3 x} g(t) d t$, then, by the Fundamental Theorem of Calculus and the Chain Rule, $h^{\prime}(x)=3 g(3 x)$. Therefore

$$
\begin{equation*}
h^{\prime}\left(-\frac{\pi}{3}\right)=3 g(-\pi)=3 \pi \tag{28}
\end{equation*}
$$

