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1 Problem 1

1.1 Part a

According to the model, the height of the water in the can at the end of the 60-day period
is∫ 60

0
[2 sin(0.03t) + 1.5] dt =

[
− 2

0.03
cos(0.03t) + 1.5t

] ∣∣∣∣60
0

(1)

=

(
−200

3
cos(9/5) + 90

)
+

200

3
=

[
470

3
− 200

3
cos

(
9

5

)]
mm.

(2)

1.2 Part b

The average rate of change in the height of water in the can over the 60-day period is

1

60

∫ 60

0
S′(t) dt =

1

60

[
470

3
− 200

3
cos

(
9

5

)]
=

[
47

18
− 10

9
cos

(
9

5

)]
mm/day, (3)

where we have inserted the value of the integral from equation (2).
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1.3 Part c

The volume V (t) of water in the can at time t is given by

V (t) = 100πS(t), so (4)
V ′(t) = 100πS′(t). (5)

Consequently,

V ′(7) = 100πS′(7) = 150π + 200π sin

(
21

100

)
cubic mm/sec. (6)

1.4 Part d

We have M ′(t) = 1
400(9t

2 − 60t+ 330). Using S′(t) as given, we find that

M ′(0)− S′(0) = 33

40
− 3

2
= −27

40
< 0, while (7)

D(60) =M ′(60)− S′(60) = 2853

40
− 2 sin

(
9

5

)
>

2853

40
− 2 > 69 > 0. (8)

Because D is a continous function on [0, 60], it follows from the Intermediate Value The-
orem that there is a time t0 ∈ (0, 60) such that D(t0) = 0, which is to say that M ′(t0) =
S′(t0), or the two rates are the same.

2 Problem 2

2.1 Part a

We have

lim
t→5−

r(t) = lim
t→5−

600t

t+ 3
=

3000

8
= 357, while (9)

lim
t→5+

[
1000e−0.2t

]
∼ 367.9. (10)

The two one-sided limits are different, so the function r has no limit at t = 5. The function
is therefore not continuous at t = 5.
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2.2 Part b

The average rate at which the tank drains over the interval [0, 8] is given by the inte-
gral

1

8

∫ 8

0
r(t) dt =

1

8

[∫ 5

0

600t

t+ 3
dt+

∫ 8

5
1000e−0.2t dt

]
∼ 258.05274, (11)

which we have evaluated by numerical integration. The average rate of drainage is thus
258.05274 liters per hour.

2.3 Part c

We have

r′(t) =
1800

(t+ 3)2
, so that (12)

r′(3) =
1800

62
= 50 liters per hour per hour. (13)

This is the rate at which the rate of drainage is changing when t = 3.

2.4 Part d

The time A at which the amount of water in the tank is 9000 liters must satisfy the equa-
tion

9000 +

∫ A

0
r(t) dt = 12000. (14)

3 Problem 3

3.1 Part a

The area of the pictured region R is∫ 4

0

√
x dx+

∫ 6

4
(6− x) dx =

2

3
x3/2

∣∣∣∣4
0

+

(
6x− x2

2

) ∣∣∣∣6
4

=
16

3
+ 2 =

22

3
. (15)
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3.2 Part b

A cross section of this solid perpendicular to the y-axis at y = t is a rectangle whose
height is 2t and whose base extends from the curve x = y2 to the curve x = 6 − y.
The area of such a cross section is therefore 2t

[
(6− t)− t2

]
, so the required integral is

2

∫ 2

0

[
6t− t2 − t3

]
dt.

Note: Evaluation of this integral is not required. For the curious,

2

∫ 2

0

[
6t− t2 − t3

]
dt = 2

[
3t2 − 1

3
t3 − 1

4
t4
] ∣∣∣∣2

0

(16)

= 2

[
12− 8

3
− 4

]
=

32

3
. (17)

3.3 Part c

The slope of the line y = 6−x is−1, so we seek a point on the curve y =
√
x where y′ = 1.

But y′ = 1
2x
−1/2 = 1 when x−1/2 = 2, or, equivalently, when x = 1

4 . The point P therefore
has coordinates

(
1
4 ,

1
2

)
.

4 Problem 4

4.1 Part a

The function f has a single critical point in (0,∞), where f ′(x) = (4 − x)x−3 = 0. This
critical point is at x = 4. Now f ′(x) > 0 for x ∈ (0, 4), while f ′(x) < 0 when x ∈
(4,∞). (A continuous function that is increasing (respectively, decreasing) on an open
interval is necessarily increasing (respectively, decreasing) on the closure of that interval.
Consequently, f is increasing on (0, 4] and decreasing on [4,∞). It follows that f has a
relative maximum at x = 4.

4.2 Part b

If f ′(x) = (4− x)x−3, then

f ′′(x) = −x−3 − 3(4− x)x−4 = 2(x− 6)x−4. (18)

4



Consequently, f ′′(x) < 0 when x ∈ (0, 6) and f ′′(x) > 0 when x ∈ (6,∞). Therefore,
f is concave upward on (6,∞) and f is concave downward on (0, 6). (Note: whether 6
belongs in these intervals of concavity depends on the definition of ”upward [downward]
concavity” we adopt. Texts vary in this respect.)

4.3 Part c

By the Fundamental Theorem of Calculus,

f(x) = f(1) +

∫ x

1
f ′(t) dt = 2 +

∫ x

1

[
4t−3 − t−2

]
dt (19)

= 2 +
(
−2t−2 + t−1

) ∣∣∣∣x
1

(20)

= 2 +
(
−2x−2 + x−1

)
− (−1) (21)

= 3− 2x−2 + x−1. (22)

5 Problem 5

5.1 Part a

Ben’s acceleration at time t = 5 is approximately

v(10)− v(0)
10− 0

=
2.3− 2.0

10
= 0.03 meters per second per second. (23)

5.2 Part b

The integral
∫ 60
0 |v(t)| dt is the integral of Ben’s speed. It measures the total distance Ben

has traveled over the interval 0 ≤ t ≤ 60. We have∫ 60

0
|v(t)| dt ∼ 2.0 · (10− 0) + 2.3 · (40− 10) + 2.5 · (60− 4) = 139, (24)

so the total distance Ben traveled during this minute is about 139 meters.
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5.3 Part c

We have
B(60)−B(40)

60− 40
=

49− 9

60− 40
− 40

20
= 2. (25)

We may apply the Mean Value Theorem here, because we are given that B is a twice
differentiable function, and this latter fact guarantees that B is continuous on [40, 60] and
differentiable on (40, 60)—which are the hypotheses of the Mean Value Theorem. Thus,
there must be a time t0 ∈ (40, 60) when v(t0) = B′(t0) = 2.

Note: We are cheating a bit, but this has to be what the examiners expected. We haven’t
been told just whereB is twice-differentiable or what the domain ofB is, and it’s not really
clear what it would mean for B′′(60) to exist if the domain of B is [0, 60]. We adopt the
convention that the problem takes differentiability at an end-point to be the appropriate
one-sided differentiability there; if we don’t do so, our conclusion that B is continuous at
t = 60 is unsupportable.

5.4 Part d

From L2 = 144+B2, we find that 2LL′ = 2BB′ = 2Bv. Thus, when t = 40 we have

2LL′ = 2Bv = �2 · 9 ·
5

�2
= 45. (26)

However, when t = 40, we also have L2 = 144+ 81 = 225, so that L = 15. Thus, at t = 40,
45 = 2LL′ = 2 · 15 · L′, and L′ = 45

30 = 3
2 meters per second.

6 Problem 6

6.1 Part a

We note first that
∫ 4π
−2π g(x) dx is the area of the pictured triangle, or 1

�2
· 6π · �2π = 6π2. On

the other hand, ∫ 4π

−2π
cos

x

2
dx = 2 sin

x

2

∣∣∣∣4π
−2π

= 2 sin(2π)− 2 sin(−π) = 0. (27)

Consequently,
∫ 4π
−2π f(x) dx = 6π2.

Note: We can also use the symmetries of the cosine function to compute the integral that
appear in (27). Doing the calculation above is probably faster than explaining how the
symmetries yield a zero integral.
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6.2 Part b

We have f ′(x) = 1 + 1
2 sin

x
2 when −2π < x < 0; f ′(x) = −1

2 + 1
2 sin

x
2 when 0 < x < 4π.

Thus f ′(π) = 0 and f ′(x) is undefined when x = 0 because g is not differentiable at x = 0.
(This is because g′−(0) = −1 while g′+(0) = −1

2 , both of which are easily seen from the
definition of g.) These give the only two critical points of f .

6.3 Part c

If h(x) =
∫ 3x
0 g(t) dt, then, by the Fundamental Theorem of Calculus and the Chain Rule,

h′(x) = 3g(3x). Therefore

h′
(
−π
3

)
= 3g(−π) = 3π. (28)
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