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1 Problem 1

1.1 Part a

Speed, s(t) = |v(t)|, satisfies [s(t)]2 = [v(t)]2, whence 2s(t)s′(t) = 2v(t)v′(t). But s(t) ≥ 0,
so s′(t) > 0 only when v(t)v′(t) > 0. Here,

v(t)v′(t) = v(t)a(t) (1)

=
(

2 sin et/4 + 1
)(1

2
et/4 cos et/4

)
. (2)

Thus,

v(5.5) · v′(5.5) ∼ 0.61591 > 0, (3)

and it follows that speed is increasing when t = 5.5.

1.2 Part b

Average velocity over the interval 0 ≤ t ≤ 6 is

1

6
[x(6)− x(0)] =

1

6

∫ 6

0
v(t) dt (4)

=
1

6

∫ 6

0

(
2 sin et/4 + 1

)
dt. (5)

Integrating numerically, we find that the average velocity over [0, 6] is approximately
1.94938.
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1.3 Part c

Total distance traveled over the interval 0 ≤ t ≤ 6 is∫ 6

0
|v(t)| dt =

∫ 6

0

√
[v(t)]2 dt. (6)

Another numerical integration gives this total distance as approximately t0 = 12.57326.

1.4 Part d

We seek the unique t1 in 0 ≤ t1 ≤ 6 for which velocity changes sign. This can happen only
where v(t1) = 0, from which we see that et1/4 = 7π/6 or

t1 = 4 ln

(
7

6
π

)
∼ 5.19552 (7)

We are given that x(0) = 2, and, by the Fundamental Theorem of Calculus, the position
we want is

x(t1) = x(0) +

∫ t1

0
v(τ) dτ (8)

= 2 +

∫ t1

0

(
2 sin eτ/4 + 1

)
dτ. (9)

Another numerical integration gives x(t1) ∼ 14.13477 as the approximate position of the
particle at the instant when it changes its direction of motion.

2 Problem 2

2.1 Part a

The rate at which the temperature of the tea is changing at time t = 3.5 is given, approxi-
mately, by the difference quotient

H(3.5 + 1.5)−H(3.5− 1.5)

(3.5 + 1.5)− (3.5− 15)
=

52− 60

3
= −8

3
degrees per minute. (10)
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2.2 Part b

The average value T̄ of the temperature of the tea, in degrees Celsius, is

T̄ =
1

10

∫ 10

0
H(t) dt. (11)

The trapezoidal approximation for this integral is

1

10
· 1

2

4∑
k=1

[H(tk−1) +H(tk)] (tk − tk−1) (12)

=
1

20
[(66 + 60)(2− 0) + (60 + 52)(5− 2) + (52 + 44)(9− 5) + (44 + 43)(10− 9)] (13)

=
1059

20
. (14)

2.3 Part c

By the Fundamental Theorem of Calculus,
∫ 10

0
H ′(t) dt = H(10)−H(0) = −23. Thus,the

amount by which the temperature changed over the interval 0 ≤ t ≤ 10 is −23◦ C.

2.4 Part d

B(t) is given, again by the Fundamental Theorem of Calculus, by

B(t) = 100− 13.84

∫ t

0
e−0.173τ dτ. (15)

Therefore

B(10) = 100− 13.84

∫ 10

0
e−0.173τ dτ (16)

= 100− 13.84

(
− 1

0.173
e−0.173τ

) ∣∣∣∣10
0

∼ 34.18275. (17)

We seek H(10) − B(10) = 43 − 34.18275 = 8.81725. So the biscuits are about 8.81725◦ C.
cooler than the tea at time t = 10.

3



3 Problem 3

3.1 Part a

If f(x) = 8x3, then f(1/2) = 1, f ′(x) = 24x2, and f ′(1/2) = 6. An equation for the line
tangent to the curve y = f(x) at the point where x = 1/2 is therefore

y = f

(
1

2

)
+ f ′

(
1

2

)(
x− 1

2

)
, or (18)

y = 1 + 6

(
x− 1

2

)
. (19)

3.2 Part b

The area of the region R is∫ 1/2

0

(
sinπx− 8x3

)
dx =

(
− 1

π
cosπx− 2x4

) ∣∣∣∣1/2
0

(20)

=

(
−0− 1

8

)
−
(
− 1

π
− 0

)
=

8− π
8π

. (21)

3.3 Part c

The volume, VR, of the solid generated by rotating the region R about the horizontal line
y = 1 is

VR = π

∫ 1/2

0

[
(1− 8x3)2 − (1− sinπx)2

]
dx. (22)
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Note: Evaluation of this integral is not required, but, for the curious,

π

∫ 1/2

0

[
(1− 8x3)2 − (1− sinπx)2

]
dx (23)

= π

∫ 1/2

0

[
64x6 − 16x3 + 2 sinπx− sin2 πx

]
dx (24)

= π

∫ 1/2

0

[
64x6 − 16x3 + 2 sinπx− 1

2
+

1

2
cos 2πx

]
dx (25)

= π

[
64

7
x7 − 4x4 − x

2
− 2

π
cosπx+

1

4π
sin 2πx

] ∣∣∣∣1/2
0

(26)

= π

(
1

14
− 1

2

)
− π

(
− 2

π

)
= 2− 3

7
π. (27)

4 Problem 4

4.1 Part a

g(−3) = −6 +

∫ −3
0

f(t) dt = −6− 1

4
π · 32 = −6− 9

4
π; (28)

g′(x) =
d

dx

[
2x+

∫ x

0
f(t) dt

]
= 2 + f(x). (29)

G′(3) = 2 + f(−3) = 2. (30)

4.2 Part b

The absolute maximum of g must occur at an endpoint of the interval [−4, 3] or at a critical
point interior to that interval. But g′(x) = 2 + f(x), and this is simply the curve y = f(x)
shifted 2 units upward. Note that all of the shifted curve that lies to the left of the y-
axis lies above the x-axis, so that g′(x) > 0 when x lies to the left of the y-axis—and
for a substantial interval just to the right of the y-axis. For 0 ≤ x ≤ 3, we then have
g′(x) = 5 − 2x, so that g′(x) = 0 when x = 5

2 . Thus, g′(x) > 0 for −4 ≤ x < 5
2 , negative

for 5
2 < x ≤ 3, and zero when x = 5

2 . The latter value is the only critical value for g.
It is clear, on geometric ground, that the area under g′ on the interval [−4, 52 ] is positive
and exceeds, in magnitude, the area between the g′ curve and the x-axis on the interval
[52 , 2]. Consequently, 0 = f(−4) < g(52) and g(3) < g(52). The absolute maximum therefore
occurs at x = 5

2 .
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4.3 Part c

The function g′ [see Part b, above, for an explicit description of g′] is increasing on [−4, 0]
and decreasing on [0, 3]. Inflection points are to be found where the monotonicity of
the derivative changes, so x = 0 is the location of the only inflectiion point for this
curve.

4.4 Part d

We have f(−4) = −1 and f(3) = −3. The average rate of change of f on the interval
[−4, 3] is therefore

f(3)− f(−4)

4− (−3)
=

(−3)− (−1)

7
= −2

7
. (31)

That f ′(c) = −2
7 fails for all c in (−4, 3) doesn’t contradict the Mean Value Theorem be-

cause f ′(0) doesn’t exist. The hypotheses of the Mean Value Theorem require, among
other things, that a function f be differentiable on (−4, 3) before we may apply the theo-
rem to that function on the interval [−4, 3]. This is not so for this f , so there is no contra-
diction.

5 Problem 5

5.1 Part a

We are given

W ′(t) =
1

25
[W (t)− 300], (32)

so W ′(0) = 1400−300
25 = 44, and the equation for the line tangent to the solution curve for

the initial value problem, in (t, w) coordinates, at t = 0 is w = W (0) + W ′(0)(t − 9) =
1400 + 44t. When t = 1

4 , this gives w = 1400 + 11 = 1411, so the approximate amount of
solid waste at the end of the first three months of 2010 is 1411 tons.
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5.2 Part b

Differentiating both sides of (32, we see that

d2W

dt2
=

1

25
· d
dt

[W (t)− 300] (33)

=
1

25
W ′(t), which, again by (32), is (34)

d2W

dt2
=

1

625
[W (t)− 300] . (35)

Thus, W ′′(0) = 44
25 > 0, and, W ′′(t) being continuous, the solution curve must be concave

upward near t = 0. This means that the tangent line to the curve at t = 0 lies below the
curve, so the estimate given in Part a is an underestimate.

5.3 Part c

Now W (0) = 1400, so W (0) − 300 > 0 and W , as the solution to a differential equation,
is continuous near τ = 0. Thus, W (τ) − 300 > 0 in some open interval, I , centered at the
origin.

For choices of t lying in I and τ lying between 0 and t, we may rewrite (32) as

W ′(t)

W (t)− 300
=

1

25
, (36)

which means that ∫ t

0

W ′(τ)

W (τ)− 300
dτ =

∫ t

0

1

25
dτ. (37)

Thus

ln |W (τ)− 300|
∣∣∣∣t
0

=
τ

25

∣∣∣∣t
0

(38)

Thus, for our choice of t, we may rewrite (38) as

ln
[
W (t)− 300

]
− ln(1400− 300) =

t

25
, or (39)

ln

[
W (t)− 300

1100

]
=

t

25
. (40)

This leads to

W (t) = 300 + 1100et/25. (41)
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6 Problem 6

6.1 Part a

We are given

f(x) =


1− 2 sinx when x ≤ 0;

e−4x when x > 0.

(42)

Thus

1. f(0) = 1− 2 sin 0 = 1, so that 0 lies in the domain of f ;

2. limx→0−(1− 2 sinx) = 1;

3. limx→0+ e
−4x = 1.

Thus, limx→0 f(x) = 1 = f(0), and it follows that f is continuous at x = 0.

6.2 Part b

When x < 0, f ′(x) = −2 cosx. When x > 0, f ′(x) = −4e−4x. We note that f ′(x) = −3
is not possible when x < 0 because −2 cosx ≥ −2. Consequently, we look for a positive
number x for which −4e−4x = −3 or e−4x = 3

4 . From this latter equation, we see that we
must have −4x = ln 3

4 or x = −1
4 ln 3

4 .
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6.3 Part c

The average value of f on the interval [−1, 1] is

1

1− (−1)

∫ 1

−1
f(t) dt =

1

2

∫ 0

−1
f(t) dt+

1

2

∫ 1

0
f(t) dt (43)

=
1

2

∫ 0

−1
(1− 2 sin t) dt+

1

2

∫ 1

0
e−4t dt (44)

=
1

2
(t+ 2 cos t)

∣∣∣∣0
−1
− 1

8
e−4t

∣∣∣∣1
0

(45)

=
1

2
[(0 + 2)− (−1 + 2 cos 1)]− 1

8

[
e−4 − 1

]
(46)

=
(13− 8 cos 1)e4 − 1

8e4
. (47)
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