AP Calculus 2011 AB FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

May 30, 2017

1 Problem 1

1.1 Part a

Speed, $s(t)=|v(t)|$, satisfies $[s(t)]^{2}=[v(t)]^{2}$, whence $2 s(t) s^{\prime}(t)=2 v(t) v^{\prime}(t)$. But $s(t) \geq 0$, so $s^{\prime}(t)>0$ only when $v(t) v^{\prime}(t)>0$. Here,

$$
\begin{align*}
v(t) v^{\prime}(t) & =v(t) a(t) \tag{1}\\
& =\left(2 \sin e^{t / 4}+1\right)\left(\frac{1}{2} e^{t / 4} \cos e^{t / 4}\right) \tag{2}
\end{align*}
$$

Thus,

$$
\begin{equation*}
v(5.5) \cdot v^{\prime}(5.5) \sim 0.61591>0 \tag{3}
\end{equation*}
$$

and it follows that speed is increasing when $t=5.5$.

1.2 Part b

Average velocity over the interval $0 \leq t \leq 6$ is

$$
\begin{align*}
\frac{1}{6}[x(6)-x(0)] & =\frac{1}{6} \int_{0}^{6} v(t) d t \tag{4}\\
& =\frac{1}{6} \int_{0}^{6}\left(2 \sin e^{t / 4}+1\right) d t \tag{5}
\end{align*}
$$

Integrating numerically, we find that the average velocity over $[0,6]$ is approximately 1.94938.

1.3 Part c

Total distance traveled over the interval $0 \leq t \leq 6$ is

$$
\begin{equation*}
\int_{0}^{6}|v(t)| d t=\int_{0}^{6} \sqrt{[v(t)]^{2}} d t \tag{6}
\end{equation*}
$$

Another numerical integration gives this total distance as approximately $t_{0}=12.57326$.

1.4 Part d

We seek the unique t_{1} in $0 \leq t_{1} \leq 6$ for which velocity changes sign. This can happen only where $v\left(t_{1}\right)=0$, from which we see that $e^{t_{1} / 4}=7 \pi / 6$ or

$$
\begin{equation*}
t_{1}=4 \ln \left(\frac{7}{6} \pi\right) \sim 5.19552 \tag{7}
\end{equation*}
$$

We are given that $x(0)=2$, and, by the Fundamental Theorem of Calculus, the position we want is

$$
\begin{align*}
x\left(t_{1}\right) & =x(0)+\int_{0}^{t_{1}} v(\tau) d \tau \tag{8}\\
& =2+\int_{0}^{t_{1}}\left(2 \sin e^{\tau / 4}+1\right) d \tau \tag{9}
\end{align*}
$$

Another numerical integration gives $x\left(t_{1}\right) \sim 14.13477$ as the approximate position of the particle at the instant when it changes its direction of motion.

2 Problem 2

2.1 Part a

The rate at which the temperature of the tea is changing at time $t=3.5$ is given, approximately, by the difference quotient

$$
\begin{equation*}
\frac{H(3.5+1.5)-H(3.5-1.5)}{(3.5+1.5)-(3.5-15)}=\frac{52-60}{3}=-\frac{8}{3} \text { degrees per minute. } \tag{10}
\end{equation*}
$$

2.2 Part b

The average value \bar{T} of the temperature of the tea, in degrees Celsius, is

$$
\begin{equation*}
\bar{T}=\frac{1}{10} \int_{0}^{10} H(t) d t \tag{11}
\end{equation*}
$$

The trapezoidal approximation for this integral is

$$
\begin{align*}
& \frac{1}{10} \cdot \frac{1}{2} \sum_{k=1}^{4}\left[H\left(t_{k-1}\right)+H\left(t_{k}\right)\right]\left(t_{k}-t_{k-1}\right) \tag{12}\\
& =\frac{1}{20}[(66+60)(2-0)+(60+52)(5-2)+(52+44)(9-5)+(44+43)(10-9)] \tag{13}\\
& =\frac{1059}{20} \tag{14}
\end{align*}
$$

2.3 Part c

By the Fundamental Theorem of Calculus, $\int_{0}^{10} H^{\prime}(t) d t=H(10)-H(0)=-23$. Thus, the amount by which the temperature changed over the interval $0 \leq t \leq 10$ is $-23^{\circ} \mathrm{C}$.

2.4 Part d

$B(t)$ is given, again by the Fundamental Theorem of Calculus, by

$$
\begin{equation*}
B(t)=100-13.84 \int_{0}^{t} e^{-0.173 \tau} d \tau \tag{15}
\end{equation*}
$$

Therefore

$$
\begin{align*}
B(10) & =100-13.84 \int_{0}^{10} e^{-0.173 \tau} d \tau \tag{16}\\
& =100-\left.13.84\left(-\frac{1}{0.173} e^{-0.173 \tau}\right)\right|_{0} ^{10} \sim 34.18275 . \tag{17}
\end{align*}
$$

We seek $H(10)-B(10)=43-34.18275=8.81725$. So the biscuits are about $8.81725^{\circ} \mathrm{C}$. cooler than the tea at time $t=10$.

3 Problem 3

3.1 Part a

If $f(x)=8 x^{3}$, then $f(1 / 2)=1, f^{\prime}(x)=24 x^{2}$, and $f^{\prime}(1 / 2)=6$. An equation for the line tangent to the curve $y=f(x)$ at the point where $x=1 / 2$ is therefore

$$
\begin{align*}
& y=f\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)\left(x-\frac{1}{2}\right), \text { or } \tag{18}\\
& y=1+6\left(x-\frac{1}{2}\right) \tag{19}
\end{align*}
$$

3.2 Part b

The area of the region R is

$$
\begin{align*}
\int_{0}^{1 / 2}\left(\sin \pi x-8 x^{3}\right) d x & =\left.\left(-\frac{1}{\pi} \cos \pi x-2 x^{4}\right)\right|_{0} ^{1 / 2} \tag{20}\\
& =\left(-0-\frac{1}{8}\right)-\left(-\frac{1}{\pi}-0\right)=\frac{8-\pi}{8 \pi} \tag{21}
\end{align*}
$$

3.3 Part c

The volume, V_{R}, of the solid generated by rotating the region R about the horizontal line $y=1$ is

$$
\begin{equation*}
V_{R}=\pi \int_{0}^{1 / 2}\left[\left(1-8 x^{3}\right)^{2}-(1-\sin \pi x)^{2}\right] d x \tag{22}
\end{equation*}
$$

Note: Evaluation of this integral is not required, but, for the curious,

$$
\begin{align*}
\pi \int_{0}^{1 / 2} & {\left[\left(1-8 x^{3}\right)^{2}-(1-\sin \pi x)^{2}\right] d x } \tag{23}\\
& =\pi \int_{0}^{1 / 2}\left[64 x^{6}-16 x^{3}+2 \sin \pi x-\sin ^{2} \pi x\right] d x \tag{24}\\
& =\pi \int_{0}^{1 / 2}\left[64 x^{6}-16 x^{3}+2 \sin \pi x-\frac{1}{2}+\frac{1}{2} \cos 2 \pi x\right] d x \tag{25}\\
& =\left.\pi\left[\frac{64}{7} x^{7}-4 x^{4}-\frac{x}{2}-\frac{2}{\pi} \cos \pi x+\frac{1}{4 \pi} \sin 2 \pi x\right]\right|_{0} ^{1 / 2} \tag{26}\\
& =\pi\left(\frac{1}{14}-\frac{1}{2}\right)-\pi\left(-\frac{2}{\pi}\right)=2-\frac{3}{7} \pi . \tag{27}
\end{align*}
$$

4 Problem 4

4.1 Part a

$$
\begin{align*}
g(-3) & =-6+\int_{0}^{-3} f(t) d t=-6-\frac{1}{4} \pi \cdot 3^{2}=-6-\frac{9}{4} \pi \tag{28}\\
g^{\prime}(x) & =\frac{d}{d x}\left[2 x+\int_{0}^{x} f(t) d t\right]=2+f(x) . \tag{29}\\
G^{\prime}(3) & =2+f(-3)=2 . \tag{30}
\end{align*}
$$

4.2 Part b

The absolute maximum of g must occur at an endpoint of the interval $[-4,3]$ or at a critical point interior to that interval. But $g^{\prime}(x)=2+f(x)$, and this is simply the curve $y=f(x)$ shifted 2 units upward. Note that all of the shifted curve that lies to the left of the y axis lies above the x-axis, so that $g^{\prime}(x)>0$ when x lies to the left of the y-axis-and for a substantial interval just to the right of the y-axis. For $0 \leq x \leq 3$, we then have $g^{\prime}(x)=5-2 x$, so that $g^{\prime}(x)=0$ when $x=\frac{5}{2}$. Thus, $g^{\prime}(x)>0$ for $-4 \leq x<\frac{5}{2}$, negative for $\frac{5}{2}<x \leq 3$, and zero when $x=\frac{5}{2}$. The latter value is the only critical value for g. It is clear, on geometric ground, that the area under g^{\prime} on the interval $\left[-4, \frac{5}{2}\right]$ is positive and exceeds, in magnitude, the area between the g^{\prime} curve and the x-axis on the interval $\left[\frac{5}{2}, 2\right]$. Consequently, $0=f(-4)<g\left(\frac{5}{2}\right)$ and $g(3)<g\left(\frac{5}{2}\right)$. The absolute maximum therefore occurs at $x=\frac{5}{2}$.

4.3 Part c

The function g^{\prime} [see Part b, above, for an explicit description of g^{\prime}] is increasing on $[-4,0]$ and decreasing on $[0,3]$. Inflection points are to be found where the monotonicity of the derivative changes, so $x=0$ is the location of the only inflection point for this curve.

4.4 Part d

We have $f(-4)=-1$ and $f(3)=-3$. The average rate of change of f on the interval $[-4,3]$ is therefore

$$
\begin{equation*}
\frac{f(3)-f(-4)}{4-(-3)}=\frac{(-3)-(-1)}{7}=-\frac{2}{7} . \tag{31}
\end{equation*}
$$

That $f^{\prime}(c)=-\frac{2}{7}$ fails for all c in $(-4,3)$ doesn't contradict the Mean Value Theorem because $f^{\prime}(0)$ doesn't exist. The hypotheses of the Mean Value Theorem require, among other things, that a function f be differentiable on $(-4,3)$ before we may apply the theorem to that function on the interval $[-4,3]$. This is not so for this f, so there is no contradiction.

5 Problem 5

5.1 Part a

We are given

$$
\begin{equation*}
W^{\prime}(t)=\frac{1}{25}[W(t)-300], \tag{32}
\end{equation*}
$$

so $W^{\prime}(0)=\frac{1400-300}{25}=44$, and the equation for the line tangent to the solution curve for the initial value problem, in (t, w) coordinates, at $t=0$ is $w=W(0)+W^{\prime}(0)(t-9)=$ $1400+44 t$. When $t=\frac{1}{4}$, this gives $w=1400+11=1411$, so the approximate amount of solid waste at the end of the first three months of 2010 is 1411 tons.

5.2 Part b

Differentiating both sides of (32, we see that

$$
\begin{align*}
\frac{d^{2} W}{d t^{2}} & =\frac{1}{25} \cdot \frac{d}{d t}[W(t)-300] \tag{33}\\
& =\frac{1}{25} W^{\prime}(t), \text { which, again by }(32), \text { is } \tag{34}\\
\frac{d^{2} W}{d t^{2}} & =\frac{1}{625}[W(t)-300] . \tag{35}
\end{align*}
$$

Thus, $W^{\prime \prime}(0)=\frac{44}{25}>0$, and, $W^{\prime \prime}(t)$ being continuous, the solution curve must be concave upward near $t=0$. This means that the tangent line to the curve at $t=0$ lies below the curve, so the estimate given in Part a is an underestimate.

5.3 Part c

Now $W(0)=1400$, so $W(0)-300>0$ and W, as the solution to a differential equation, is continuous near $\tau=0$. Thus, $W(\tau)-300>0$ in some open interval, I, centered at the origin.
For choices of t lying in I and τ lying between 0 and t, we may rewrite (32) as

$$
\begin{equation*}
\frac{W^{\prime}(t)}{W(t)-300}=\frac{1}{25} \tag{36}
\end{equation*}
$$

which means that

$$
\begin{equation*}
\int_{0}^{t} \frac{W^{\prime}(\tau)}{W(\tau)-300} d \tau=\int_{0}^{t} \frac{1}{25} d \tau \tag{37}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left.\ln |W(\tau)-300|\right|_{0} ^{t}=\left.\frac{\tau}{25}\right|_{0} ^{t} \tag{38}
\end{equation*}
$$

Thus, for our choice of t, we may rewrite (38) as

$$
\begin{align*}
\ln [W(t)-300]-\ln (1400-300) & =\frac{t}{25}, \text { or } \tag{39}\\
\ln \left[\frac{W(t)-300}{1100}\right] & =\frac{t}{25} . \tag{40}
\end{align*}
$$

This leads to

$$
\begin{equation*}
W(t)=300+1100 e^{t / 25} \tag{41}
\end{equation*}
$$

6 Problem 6

6.1 Part a

We are given

$$
f(x)= \begin{cases}1-2 \sin x & \text { when } x \leq 0 \tag{42}\\ e^{-4 x} & \text { when } x>0\end{cases}
$$

Thus

1. $f(0)=1-2 \sin 0=1$, so that 0 lies in the domain of f;
2. $\lim _{x \rightarrow 0^{-}}(1-2 \sin x)=1$;
3. $\lim _{x \rightarrow 0^{+}} e^{-4 x}=1$.

Thus, $\lim _{x \rightarrow 0} f(x)=1=f(0)$, and it follows that f is continuous at $x=0$.

6.2 Part b

When $x<0, f^{\prime}(x)=-2 \cos x$. When $x>0, f^{\prime}(x)=-4 e^{-4 x}$. We note that $f^{\prime}(x)=-3$ is not possible when $x<0$ because $-2 \cos x \geq-2$. Consequently, we look for a positive number x for which $-4 e^{-4 x}=-3$ or $e^{-4 x}=\frac{3}{4}$. From this latter equation, we see that we must have $-4 x=\ln \frac{3}{4}$ or $x=-\frac{1}{4} \ln \frac{3}{4}$.

6.3 Part c

The average value of f on the interval $[-1,1]$ is

$$
\begin{align*}
\frac{1}{1-(-1)} \int_{-1}^{1} f(t) d t & =\frac{1}{2} \int_{-1}^{0} f(t) d t+\frac{1}{2} \int_{0}^{1} f(t) d t \tag{43}\\
& =\frac{1}{2} \int_{-1}^{0}(1-2 \sin t) d t+\frac{1}{2} \int_{0}^{1} e^{-4 t} d t \tag{44}\\
& =\left.\frac{1}{2}(t+2 \cos t)\right|_{-1} ^{0}-\left.\frac{1}{8} e^{-4 t}\right|_{0} ^{1} \tag{45}\\
& =\frac{1}{2}[(0+2)-(-1+2 \cos 1)]-\frac{1}{8}\left[e^{-4}-1\right] \tag{46}\\
& =\frac{(13-8 \cos 1) e^{4}-1}{8 e^{4}} . \tag{47}
\end{align*}
$$

