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1 Problem 1

1.1 Part a

According to the data in the table,W (15) = 67.9◦ F, whileW (9) = 61.8◦ F. Therefore,

W ′(12) ∼ W (15)−W (9)

15− 9
=

67.9− 61.8

6
=

61

60
. (1)

This means that, 12 minutes after the heating began, the temperature of the water in the
tub is increasing at roughly 61/60 degrees Fahrenheit per minute.

1.2 Part b

By the Fundamental Theorem of Calculus,∫ 20

0
W ′(t) dt =W (20)−W (0) = 71.0− 55.0 = 16.0. (2)

Thus, the water temperature has increased by about 16.0◦ F. during the first twenty min-
utes of heating.
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1.3 Part c

Using a left Riemann sum and the data from the table, we can approximate

1

20

∫ 20

0
W (t) dt ∼ 1

20
[55.0 · (4− 0) + 57.1 · (9− 4) + 61.8 · (15− 9) + 67.9 · (20− 15)] .

(3)

The value of this sum is 60.79◦ F. We were given that W is an increasing function on
the interval in question, so the value of W (t) at the left-hand end-point of each of the
subintervals we have used is the minimum of W (t) in that subinterval. Consequently, the
left Riemann sum underestimates the integral for the average value of W .

1.4 Part d

By the Fundamental Theorem of Calculus,

W (25) =W (20) +

∫ 25

20
W ′(t) dt (4)

=W (20) + 0.04

∫ 25

20

[√
t cos(0.06t)

]
dt. (5)

Integrating numerically, we find that W (25) ∼ 73.04315◦ F.

2 Problem 2

2.1 Part a

We begin by solving numerically for x0, the x-coordinate of the point where the curves
y = lnx and y = 5 − x intersect, and we find that x0 ∼ 3.69344. Then the corresponding
y-coordinate, y0 is given by y0 = 5− x0 ∼ 1.30656.

We rewrite the equations of the curves as x = 5 − y and x = ey. Then the area we seek is
therefore ∫ y0

0
[(5− y)− ey] dy ∼ 2.98580, (6)

where we have carried out the integration numerically. (Symbolic integration is possible,
but there is little point in doing so because we know y0 only approximately.)

2



2.2 Part b

The volume of the solid we have been given is then∫ x0

0
(lnx)2 dx+

∫ 5

x0

(5− x)2 dx ∼ 4.78402. (7)

(We have done the integrations numerically, although it was not required to carry them
out at all. (Symbolic integration is possible, but there is little point in doing so because we
know x0 only approximately.))

2.3 Part c

If the horizontal line y = k divides the region R into two pieces of equal area, we must
have ∫ k

0
[(5− y)− ey] dy =

∫ y0

k
[(5− y)− ey] dy. (8)

Solution of this equation for k is not required,. We know one of the limits of integration
only approximately, and numerical methods give k ∼ 0.42100.

3 Problem 3

3.1 Part a

The value g(2) is the negative of the area bounded by the lines y = 0, y = (x − 1)/2, and
x = 2. The region is a triangle of base 1, altitude 1/2, so g(2) = −1/4.

The value g(−2) is the sum of, on the one hand, the area of the triangular region bounded
by the lines y = 0, y = −3(x + 1), and x = −2, and, on the other hand, the area of a
semi-circular region of radius 1. Thus g(−2) = (3 + π)/2.

3.2 Part b

We have g(x) =
∫ x
1 f(t) dt, so it follows from the Fundamental Theorem of Calculus that

g′(x) = f(x). Hence g′(−3) = f(−3), and we read the latter from the graph: Thus,
g′(−3) = f(−3) = 2.
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From our conclusion above that g′(x) = f(x), it follows that g′′(x) = f ′(x) wherever the
latter exists. But the graph of y = f(x) is a straight line of slope 1 in the vicinity of the
point (−3, 2), so g′′(−3) = f ′(−3) = 2.

3.3 Part c

The line tangent to y = g(x) is horizontal only where g′(x) = f(x) [as found above in
Part b] is 0. From the graph, we see that f(x) = 0 in just two places: where x = −1 and
where x = 1. Thus, x = −1 and x = 1 give the only horizontal tangent lines to the curve
y = g(x).

As x increases through x = 1, g′(x) = f(x) doesn’t change sign. By the First Derivative
Test, g has neither a relative minimum nor a relative maximum at x = 1.

3.4 Part d

The curve y = g(x) has inflection points where the second derivative, g′′(x), undergoes a
change of sign. We saw in Part b, above, that g′′(x) = f ′(x), and we can read the sign of
the latter from the graph. Hence, g has inflection points at x = −2, x = 0, and x = 1.

4 Problem 4

4.1 Part a

If f(x) =
√
25− x2 on [−5, 5], then

f ′(x) =
−x√

25− x2
(9)

on (−5, 5).

4.2 Part b

From Part a, we have

f ′(−3) = − −3√
25− 9

=
3

4
. (10)
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So the line tangent to the curve y = f(x) at the point where x = −3 (and y = 4) has
equation

y = 4 +
3

4
(x+ 3). (11)

4.3 Part c

We have limx→−3−
√
25− x2 = 4. Also, limx→−3+(x + 7) = 4. Consequently, the limit of

g(x) as x→ −3 exists and is 4 = f(−3) = g(−3). We conclude that limx→−3 g(x) = g(−3),
and g is continuous at x = −3.

4.4 Part d

We let u = 25 − x2. Then du = −2x dx, or x dx = −1

2
du. Moreover, when x = 0, u = 25,

and when x = 5, u = 0. Therefore∫ 5

0
x
√

25− x2 dx = −1

2

∫ 0

25

√
u du = −1

3
u3/2

∣∣∣∣0
25

=
125

3
. (12)

5 Problem 5

5.1 Part a

We suppose that B(t1) = 40, while B(t2) = 70. Because

B′(t) =
1

5
[100−B(t)], (13)

we have

B′(t1) =
1

5
[100−B(t1)] = 12 > 5 =

1

5
[100−B(t2)] = B′(t2). (14)

It follows that the bird is growing faster when it weighs 40 grams than when it weighs 70
grams.

5



5.2 Part b

From B′(t) = 1
5 [100−B(t)], we obtain

B′′(t) = −1

5
B′(t) = − 1

25
[100−B(t)] (15)

But this quantity is negative when B(t) < 100, and, because B(0) = 20, this means that
the graph of B must be concave downward on some interval immediately to the right
of t = 0. The given graph doesn’t have these properties, and so can’t be the graph of
B.

5.3 Part c

If B(0) = 20, then, B being the solution of a differential equation, is a continuous function
and 100−B(t) > 0 on some open interval, I , centered at t = 0.

From B′(t) = 1
5 [100−B(t)], we have for all τ in I ,

B′(τ)

100−B(τ)
=

1

5
, whence, for any t in I , (16)∫ t

0

B′(τ)

100−B(τ)
dτ =

1

5

∫ t

0
dτ. (17)

Integrating, and making use of the fact that B(0) = 20 < 100, we see that

− ln[100−B(τ)]

∣∣∣∣t
0

=
1

5
τ

∣∣∣∣t
0

, or (18)

ln 80− ln[100−B(t)] =
t

5
, which we rewrite as (19)

ln[100−B(t)] = ln 80− 1

5
t. (20)

From this it follows that

100−B(t) = 80e−t/5, or (21)

B(t) = 100− 80e−t/5. (22)
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6 Problem 6

6.1 Part a

We are given that v(t) = cos(πt/6) for 0 ≤ t ≤ 12 for a certain particle moving along the
x-axis. Observing the conventions (not mentioned in the statement of the problem) that
the x-axis is horizontal with positive direction pointing toward the right, we see that the
particle moves leftward when v(t) < 0, or when 0 > cos(πt/6). Thus, we see that we need
that portion of the interval [0, 12] where cos(πt/6) < 0, or, using standard properties of
the cosine function, when 3 < t < 9.

6.2 Part b

The total distance traveled is the integral of speed, |v(t)|. Thus, the distance traveled when

0 ≤ t ≤ 6 is
∫ 6

0
| cos t| dt.

6.3 Part c

Acceleration is v′(t) = −π
6
sin
(π
6
t
)

.

Let S(t) denote speed at time t. Then S = |v| ≥ 0, and S2 = v2. Thus, 2SS′ = 2vv′, and
S′ = vv′/S. We have v(4) = cos(2π/3) < 0 and v′(4) = −(π/6) sin(2π/3) > 0, so it follows
that S′ = vv′/S < 0. Hence, speed is decreasing when t = 4.

Note: In fact, the notion decreasing is usually defined only for functions on an interval, and
not at a point. Thus, it would be more appropriate to say that, because S′ is continuous at
t = 4 and S′(4) < 0. So S′(t) must be negative on some open interval centered at t = 4—
which guarantees that S is decreasing on some open interval centered at t = 4.
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6.4 Part d

The position x(t) of the particle at time t is given by x(t) = x(0) +
∫ t
0 v(τ) dτ . There-

fore,

x(4) = −2 +
∫ 4

0
cos
(π
6
τ
)
dτ (23)

= −2 + 6

π
sin
(π
6
τ
) ∣∣∣∣4

0

(24)

=
3
√
3

π
− 2. (25)
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