AP Calculus 2014 AB FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

May 27, 2017

1 Problem 1

1.1 Part a

We have $A(t)=6.687(0.931)^{t}$, where t is measured in days and $A(t)$ is measured in pounds. So the average rate of change of $A(t)$ over the interval $0 \leq t \leq 30$ is

$$
\begin{equation*}
\frac{A(30)-A(0)}{30-0} \sim \frac{0.7829279-6.687}{30} \sim-0.19680 \text { pounds per day. } \tag{1}
\end{equation*}
$$

1.2 Part b

We have $A^{\prime}(t)=6.687 \cdot(0.931)^{t} \cdot \ln (0.931)=0.47809376 \cdot(0.931)^{t}$, so $A^{\prime}(15) \sim-0.16359$. Thus, after 15 days have passed, the amount of grass clippings remaining in the bin is changing at about the rate of -0.164 pounds per day.

1.3 Part c

The average amount of grass clippings in the bin over the interval $0 \leq t \leq 30$ is

$$
\frac{1}{30} \int_{0}^{30} A(\tau) d \tau
$$

so we must solve for t in the equation

$$
\begin{equation*}
30 A(t)=\int_{0}^{30} A(\tau) d \tau \tag{2}
\end{equation*}
$$

We solve numerically and obtain $t \sim 12.41477$. Thus, we need 12.41477 days.

1.4 Part d

The linear approximation $L(t)$ to A at $t=30$ is

$$
\begin{align*}
& L(t)=A(30)+A^{\prime}(30)(t-30), \text { or } \tag{3}\\
& L(t) \sim 0.78293-0.05598(t-30) . \tag{4}
\end{align*}
$$

To find the approximate time at which there will be 0.5 pounds of grass clippings remaining in the bin, we must solve the equation $L(t)=0.5$ for t. Doing so, we find that, according to this model, there will be 0.5 pounds of grass clippings in the bin when $t=35.05443$ days.

2 Problem 2

Let R be the region enclosed by the horizontal line $y=4$ and the graph of the equation $y=x^{4}-2.3 x^{3}+4$.

2.1 Part a

The volume of the solid generated when R is rotated about the horizontal line $y=-2$ is, using the method of washers, $\pi \int_{a}^{b}\left([4+2]^{2}-[f(x)+2]^{2}\right) d x$, where $a<b$ are the x-coordinates of the intersections of the two curves. We find these limits by solving the equation $f(x)=4$, or $x^{4}-2.3 x^{3}+4=4$, for x. From this solution we see that $a=0$ and $b=2.3$. The desired volume is therefore (integrating numerically)

$$
\begin{align*}
\pi \int_{0}^{2.3}\left(36-[f(x)+2]^{2}\right) d x & =\pi \int_{0}^{2.3}\left(27.6 x^{2}-17.29 x^{4}+4.6 x^{6}-x^{8}\right) d x \tag{5}\\
& \sim 98.86789 \tag{6}
\end{align*}
$$

2.2 Part b

If R is the base of a solid, each of whose cross-sections perpendicular to the x-axis is an isosceles right triangle with a leg in R, then we may take the altitude and the base of each cross-section to be $[4-f(x)]$. Thus, the volume of this solid is

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{2.3}[4-f(x)]^{2} d x \sim 3.57372 \tag{7}
\end{equation*}
$$

2.3 Part c

The equation we must solve is

$$
\begin{equation*}
\int_{0}^{k}[4-f(x)] d x=\int_{k}^{2.3}[4-f(x)] d x . \tag{8}
\end{equation*}
$$

Solution of (8) is not required, but a numerical solution is easily obtained. Integration, followed by algegraic simplfication, allows us to rewrite (8) as

$$
\begin{equation*}
0.4 k^{5}-1.15 k^{4}+3.2181715=0 \tag{9}
\end{equation*}
$$

and then numerical solution gives $k \sim 1.57824$.

3 Problem 3

We are given a function graphically; it can be written as

$$
f(x)= \begin{cases}-x-3, & -5 \leq x \leq-3 \tag{10}\\ \frac{4}{3} x+4, & -3<x \leq 0 \\ 4-2 x, & 0<x \leq 4\end{cases}
$$

We put $g(x)=\int_{-3}^{x} f(t) d t$.

3.1 Part a

The integral that gives $g(3)$ is the sum of the (signed) areas of the triangle whose vertices are $(-5,2),(-3,0)$, and $(-5,0)$; the triangle whose vertices are $(-3,0),(2,0)$, and $(0,4)$; and the triangle whose vertices are $(2,0),(3,-2)$, and $(3,0)$. Thus, $g(3)=2+10+(-1)=$ 11.

3.2 Part b

The function f is, by the Fundamental Theorem of Calculus, the function g^{\prime}. So f^{\prime}, which gives the slope of f, is $g^{\prime \prime}$. Thus, g is both increasing and concave down where f is positive and f^{\prime} is negative. The intervals in question are therefore $(-5,-3)$ and $(0,2)$.

3.3 Part c

With $h(x)=\frac{g(x)}{5 x}$, we have

$$
\begin{align*}
h^{\prime}(x) & =\frac{5 x g^{\prime}(x)-5 g(x)}{25 x^{2}}, \text { so } \tag{11}\\
h^{\prime}(3) & =\frac{\not b \cdot 3 \cdot g^{\prime}(3)-\not 5 \cdot g(3)}{\not b \cdot 3} \tag{12}\\
& =\frac{3 \cdot f(3)-g(3)}{3} \tag{13}\\
& =\frac{3 \cdot(-2)-11}{3}=-\frac{17}{3} . \tag{14}
\end{align*}
$$

3.4 Part d

If $p(x)=f\left(x^{2}-x\right)$, then, by the Chain Rule,

$$
\begin{equation*}
p^{\prime}(x)=(2 x-1) f^{\prime}\left(x^{2}-x\right) . \tag{15}
\end{equation*}
$$

Thus,

$$
\begin{align*}
p^{\prime}(1) & =[2 \cdot(-1)-1] \cdot f^{\prime}\left[(-1)^{2}-(-1)\right] \tag{16}\\
& =(-3) \cdot f^{\prime}(2)=(-3) \cdot(-2)=6 . \tag{17}
\end{align*}
$$

4 Problem 4

4.1 Part a

The average acceleration of the train over the interval $2 \leq t \leq 8$ is

$$
\begin{equation*}
\frac{v_{A}(8)-v_{A}(2)}{8-2}=\frac{(-120)-100}{6}=-\frac{220}{6}=-\frac{110}{3} \text { meters } / \mathrm{min} / \mathrm{min} . \tag{18}
\end{equation*}
$$

4.2 Part b

We are given that the velocity function, v_{A}, is differentiable in its domain, so it is also continuous there. Now $v_{A}(5)=40$ and $v_{A}(8)=-120$ are given in the table, so the Intermediate Value Property of continuous functions guarantees that there is a number ξ in the interval $(5,8)$ for which $v_{A}(\xi)=-100$.

Note: Continuity of the derivative is not needed here; derivatives have the Intermediate Value Property-even though they need not be continuous functions. This fact is not ordinarily known to students at the level of AP Calculus, so a student who wants to use it should state it explicitly.

4.3 Part c

Under the conditions given, if $s_{A}(t)$ denotes the distance of train A from Origin Station at time t, then s_{A} is given by

$$
\begin{equation*}
s_{A}(t)=300+\int_{2}^{t} v_{A}(\tau) d \tau \tag{19}
\end{equation*}
$$

The train's distance from Origin Station at time $t=12$ is thus given by

$$
\begin{equation*}
s_{A}(12)=300+\int_{2}^{12} v_{A}(\tau) d \tau \tag{20}
\end{equation*}
$$

The trapezoidal approximation, using the three subintervals given in the table, is

$$
\begin{equation*}
s_{A}(12)=300+\frac{1}{2}[(100+40) \cdot 3+(40-120) \cdot 3+(-120-150) \cdot 4]=-150 \text { meters. } \tag{21}
\end{equation*}
$$

4.4 Part d

Let $s_{B}(t)$ denote the distance of train B from Origin Station at time t. The distance $S(t)$ between the two trains then satisfies the equation

$$
\begin{equation*}
S^{2}=s_{A}^{2}+s_{B}^{2} \tag{22}
\end{equation*}
$$

Implicit differentiation with respect to t gives

$$
\begin{align*}
2 S(t) S^{\prime}(t) & =2 s_{A}(t) s_{A}^{\prime}(t)+2 s_{B}(t) s_{B}^{\prime}(t) \tag{23}\\
& =2 s_{A}(t) v_{A}(t)+2 s_{B}(t) v_{B}(t) \tag{24}
\end{align*}
$$

Substituting $t=2$ and using what has been given in the problem, we find that $S^{\prime}(2)=160$ meters per minute.

5 Problem 5

5.1 Part a

By the First Derivative Test, a differentiable function defined for all real numbers has a relative minimum only at a point where its derivative is zero, negative on some interval to the left, and positive on some interval to the right. From the table given, we see that the function f has a relative minimum in $[-2,3]$ only at $x=1$.

5.2 Part b

Because we know that f is twice differentiable on the real line, we know that $f^{\prime \prime}$ exists everywhere, making f^{\prime} continuous. Moreover, we are given that $f^{\prime}(-1)=0=f^{\prime}(1)$. Thus, f^{\prime} satisfies the hypotheses of Rolle's theorem on $[-1,1]$, and it follows that there must be a number c in $(-1,1)$ such that $f^{\prime \prime}(c)=0$.

5.3 Part c

$$
\begin{align*}
& h^{\prime}(x)=\frac{d}{d x}(\ln [f(x)])=\frac{f^{\prime}(x)}{f(x)}, \text { so } \tag{25}\\
& h^{\prime}(3)=\frac{f^{\prime}(3)}{f(3)}=\frac{1 / 2}{7}=\frac{1}{14} . \tag{26}
\end{align*}
$$

5.4 Part d

$$
\begin{equation*}
f^{\prime}[g(x)] g^{\prime}(x)=\frac{d}{d x} f[g(x)], \tag{27}
\end{equation*}
$$

so

$$
\begin{align*}
\int_{-2}^{3} f^{\prime}[g(x)] g^{\prime}(x) d x & =\left.f[g(x)]\right|_{-2} ^{3} \tag{28}\\
& =f[g(3)]-f[g(-2)] \tag{29}\\
& =f(1)-f(-1) \tag{30}\\
& =2-8=-6 . \tag{31}
\end{align*}
$$

6 Problem 6

6.1 Part a

Figure 1: Problem 6, Part a

6.2 Part b

If f is the solution to the differential equation $y^{\prime}=(3-y) \cos x$ through $(0,1)$, then $f^{\prime}(0)=$ $(3-1) \cos 0=2$ so the line tangent to the solution curve at $(0,1)$ has equation

$$
\begin{equation*}
y=1+2(x-0) \tag{32}
\end{equation*}
$$

The ordinate of the point on this line that corresponds to $x=0.2$ gives the approximate value of $f(0.2)$ that we desire. Thus, $f^{\prime}(0.2) \sim 1+2(0.2)=1.4$.

6.3 Part c

If f is the solution to the initial value problem $y^{\prime}=(3-y) \cos x$ with $y(0)=1$, then $f^{\prime}(x)=$ $[3-f(x)] \cos x$ on some open interval centered at $x=0$ where f must be continuous.

Because $f(0)=1 \neq 3$ we may assume that $3-f(x)>0$ on that interval. For all x in such an interval, we must have

$$
\begin{align*}
\int_{0}^{x} \frac{f^{\prime}(\xi)}{3-f(\xi)} d \xi & =\int_{0}^{x} \cos \xi d \xi, \text { or } \tag{33}\\
-\left.\ln |3-f(\xi)|\right|_{0} ^{x} & =\left.\sin \xi\right|_{0} ^{x} \tag{34}
\end{align*}
$$

Equivalently,

$$
\begin{align*}
\ln 2-\ln |3-f(x)| & =\sin x, \text { or } \tag{35}\\
\frac{2}{|3-f(x)|} & =e^{\sin x}, \text { and } \tag{36}\\
|3-f(x)| & =2 e^{-\sin x .} \tag{37}
\end{align*}
$$

We must write $|3-f(x)|=3-f(x)$ because $3-f(x)>0$, and it follows that

$$
\begin{equation*}
f(x)=3-2 e^{-\sin x} \tag{38}
\end{equation*}
$$

is the solution we seek.

