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1 Problem1

1.1 Parta

We have A(t) = 6.687(0.931)!, where ¢ is measured in days and A(t) is measured in
pounds. So the average rate of change of A(t) over the interval 0 < ¢ < 30 is
A(30) — A(0)  0.7829279 — 6.687
30—-0 30

~ —0.19680 pounds per day. (1)

1.2 Partb
We have A/(t) = 6.687 - (0.931)" - In(0.931) = 0.47809376 - (0.931)!, so A’(15) ~ —0.16359.

Thus, after 15 days have passed, the amount of grass clippings remaining in the bin is
changing at about the rate of —0.164 pounds per day.

1.3 Partc

The average amount of grass clippings in the bin over the interval 0 < ¢ < 30 is
1 30

— A(r)d
3 ), A
so we must solve for ¢ in the equation
30
30A(t) = A(r)dr. (2)

0
We solve numerically and obtain ¢ ~ 12.41477. Thus, we need 12.41477 days.
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14 Partd

The linear approximation L(t) to A att = 30 is

L(t) = A(30) + A’(30)(t — 30), or 3)
L(t) ~ 0.78293 — 0.05598(¢ — 30). (4)

To find the approximate time at which there will be 0.5 pounds of grass clippings remain-
ing in the bin, we must solve the equation L(t) = 0.5 for t. Doing so, we find that, accord-
ing to this model, there will be 0.5 pounds of grass clippings in the bin when ¢ = 35.05443
days.

2 Problem 2

Let R be the region enclosed by the horizontal line y = 4 and the graph of the equation
y=at —2.32% + 4.

2.1 Parta

The volume of the solid generated when R is rotated about the horizontal line y = —2
b

is, using the method of washers, = / ([4 + 22 - [f(z) + 2]2> dx, where a < b are the

a
x-coordinates of the intersections of the two curves. We find these limits by solving the

equation f(z) =4, or x* — 2.323 + 4 = 4, for 2. From this solution we see that a = 0 and
b = 2.3. The desired volume is therefore (integrating numerically)

2.3 2.3
7r/ (36 — [f(2) +2)°) do = 7r/ (27.62* — 17.292" + 4.62° — 2%) da (5)
0 0

~ 98.86789, (6)

2.2 Partb

If R is the base of a solid, each of whose cross-sections perpendicular to the z-axis is an
isosceles right triangle with a leg in R, then we may take the altitude and the base of each
cross-section to be [4 — f(z)]. Thus, the volume of this solid is

;/02'3 [4— f(2)]? do ~ 3.57372 (7)



23 Partc
The equation we must solve is

k 2.3
/ 4 f(z)] do = / 4 f(x)] da. ®)
0 k

Solution of (8) is not required, but a numerical solution is easily obtained. Integration,
followed by algegraic simplfication, allows us to rewrite (8) as

0.4k — 1.15k* 4 3.2181715 = 0, )

and then numerical solution gives k ~ 1.57824.

3 Problem 3

We are given a function graphically; it can be written as

—x—3, —-5H<zr<-=3;

4
flz) = §x+4, -3 <z <0; (10)

4—-2z, O0<z<A4

We put g(z) = /_ 3 F(1) dt.

3.1 Parta

The integral that gives ¢(3) is the sum of the (signed) areas of the triangle whose vertices
are (—5,2), (—3,0), and (—5,0); the triangle whose vertices are (—3,0), (2,0), and (0,4);
and the triangle whose vertices are (2,0), (3, —2), and (3,0). Thus, g(3) =2+ 10+ (—1) =
11.

3.2 Partb
The function f is, by the Fundamental Theorem of Calculus, the function ¢’. So f’, which

gives the slope of f,is ¢”. Thus, g is both increasing and concave down where f is positive
and f’ is negative. The intervals in question are therefore (—5, —3) and (0, 2).
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3.3 Partc
With h(x) = g5(1‘)’ we have
T

_ 5ag/(x) — 5g(x)

h'(x) 5572 , SO (11)
_ 3 f(3)3— 9(3) (13)
C3.(-2)—11 17
-3 T3 (14
34 Partd
If p(z) = f (2% — z), then, by the Chain Rule,
p(z)=(2x - 1)f (ar:2 —x). (15)
Thus,
p'(1)=[2-(=1) = 1]- f [(-=1)* = (=1)] (16)
=(=3)-f'(2) = (-3) - (-2) =6. (17)
4 Problem 4
41 Parta

The average acceleration of the train over the interval 2 <t < 8is

— 2 —-120) -1 22 11
UA<8§ ;)A( ) = ( OZS 00 = —?0 = —?0 meters/min/min. (18)

4.2 Partb

We are given that the velocity function, v, is differentiable in its domain, so it is also
continuous there. Now v4(5) = 40 and v4(8) = —120 are given in the table, so the Inter-
mediate Value Property of continuous functions guarantees that there is a number ¢ in the
interval (5, 8) for which v4(¢) = —100.



Note: Continuity of the derivative is not needed here; derivatives have the Intermediate
Value Property—even though they need not be continuous functions. This fact is not
ordinarily known to students at the level of AP Calculus, so a student who wants to use
it should state it explicitly.

4.3 Partc

Under the conditions given, if s 4(¢) denotes the distance of train A from Origin Station at
time ¢, then s 4 is given by

t
sa(t) = 300 + / va(T) dr. (19)
2

The train’s distance from Origin Station at time ¢ = 12 is thus given by

12
s4(12) —300+/ va(T)dr. (20)
2
The trapezoidal approximation, using the three subintervals given in the table, is

1
54(12) = 300 + 3[(100 +40) - 3 + (40 — 120) - 3+ (=120 — 150) - 4] = ~150 meters. (21)

44 Partd

Let sp(t) denote the distance of train B from Origin Station at time ¢. The distance S(¢)
between the two trains then satisfies the equation

S? = 54 + s%. (22)
Implicit differentiation with respect to ¢ gives

25(t)S'(t) = 254 ()5, (t) + 2sp(t)s’z(t) (23)
= 254(t)va(t) + 2sp(t)vp(t). (24)

Substituting ¢ = 2 and using what has been given in the problem, we find that 5’(2) = 160
meters per minute.



5 Problem 5

5.1 Parta

By the First Derivative Test, a differentiable function defined for all real numbers has a
relative minimum only at a point where its derivative is zero, negative on some interval
to the left, and positive on some interval to the right. From the table given, we see that the
function f has a relative minimum in [—-2, 3] only at z = 1.

5.2 Partb

Because we know that f is twice differentiable on the real line, we know that f” exists
everywhere, making f’ continuous. Moreover, we are given that f'(—1) = 0 = f/(1).
Thus, f’ satisfies the hypotheses of Rolle’s theorem on [—1, 1], and it follows that there
must be a number cin (—1, 1) such that f”(c) = 0.

5.3 Partc

W) = o Wlf@) = £, so @5)
oo B 12 1

imm_fm)_7;_11 (26)

54 Partd

! ! d
Fl(e)lg' () = = flo(a)]. 27)
SO
3 3

/ Sl ) de = flo(w)]| (28)
— l9(3)] — Flo(~2)] (29)
— £ - f(-1) (30)
=2-8=—6. (31)



6 Problem 6

6.1 Parta
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Figure 1: Problem 6, Part a

6.2 Partb

If f is the solution to the differential equation y' = (3 —y) cos z through (0, 1), then f'(0) =
(3 — 1) cos0 = 2 so the line tangent to the solution curve at (0, 1) has equation

y=1+2(z—0). (32)
The ordinate of the point on this line that corresponds to = = 0.2 gives the approximate

value of f(0.2) that we desire. Thus, f/(0.2) ~ 1+ 2(0.2) = 1.4.

6.3 Partc

If f is the solution to the initial value problem y’ = (3 —y) cos x with y(0) = 1, then f'(z) =
[3 — f(x)] cosxz on some open interval centered at + = 0 where f must be continuous.



Because f(0) = 1 # 3 we may assume that 3 — f(x) > 0 on that interval. For all z in such

an interval, we must have

A3 _["
; 3—f(£)d£_/0 cosé d€, or
—In[3 - f(§)l| =sing
0 0

Equivalently,

In2—-1In|3— f(z)| =sinz, or

2 .
= 6smyc7 and

B=f@l =
3= fla)] = 2e7.

We must write |3 — f(x)] = 3 — f(x) because 3 — f(x) > 0, and it follows that

f(.l‘) =3 2e—sina:

is the solution we seek.

(33)

(34)

(35)
(36)

(37)

(38)



