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1 Problem 1

1.1 Part a

The area of the region R is∫ 2

0

(
8− x2/3

)
dx =

(
8x− 2

5
x5/2

) ∣∣∣∣2
0

= 16− 8

5

√
2 ∼ 13.73726. (1)

1.2 Part b

The volume of the solid generated by revolving R about the x-axis is

π

∫ 2

0

(
8− x3/2

)2
dx = π

∫ 2

0

(
64− 16x3/2 + x3

)
dx (2)

= π

(
64x− 32

5
x5/2 +

1

4
x4
) ∣∣∣∣2

0

(3)

=

(
132− 128

5

√
2

)
π ∼ 300.95243 (4)

1.3 Part c

We have

π

∫ k

0

(
8− x3/2

)2
dx = π

(
64k − 32

5
k5/2 +

1

4
k4
)
. (5)
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Equating this quantity to half of the volume given in (4) and solving numerically, we find
that k ∼ 0.80489.

2 Problem 2

2.1 Part a

We observe first that

lim
x→−∞

2xe2x = lim
x→−∞

2x

e−2x
. (6)

Numerator and denominator of this last fraction both become infinite as x → −∞, so we
may attempt l’Hôpital’s Rule. This gives

lim
x→−∞

2x

e−2x
= lim

x→−∞

2

−2e−2x
= 0, (7)

and we conclude that

lim
x→−∞

2xe2x = 0. (8)

2.2 Part b

If f(x) = 2xe2x, then f ′(x) = (2 + 4x)e2x, which is defined for all real x. Thus, f ′(x) = 0
only when x = −1/2, so f has just one critical point—which lies at x = −1/2. But e2x > 0
for all x, while 2 + 4x < 0 on (−∞,−1/2) but 2x + 4 > 0 on (−1/2,∞). So f ′(x) < 0 on
(−∞,−1/2), and f ′(x) > 0 on (−1/2,∞). Because f is everywhere continuous1, it follows
that f is a strictly decreasing function on (−∞,−1/2], but that f is a strictly increasing
function on [−1/2,∞). That is, if x < −1/2 then f(x) > f(−1/2) while if x > −1/2 then
f(x) > f(−1/2). Consequently, f(−1/2) = −e−1 is an absolute minimum for f(x).

2.3 Part c

By our conclusion in Part b, above, the observation that limx→∞ 2xe2x = ∞, and the
continuity of f , we see that the range of f is [−e−1,∞).

1Continuity allows us to extend our conclusions of monotonicity to the finite endpoints of both intervals
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2.4 Part d

We put fb(x) = bxebx, and we find that fb′(x) = (b+ b2x)ebx. If b > 0, we argue as in Parts
a and b, above, and we find that fb has an absolute minimum at x = −1/b. This minimum
is fb(−1/b) = −e−1, which does not depend on b. If b < 0, we obtain the same result after
the change of variables u = −x, which amounts to a reflection about the y-axis.

3 Problem 3

3.1 Part a

The third degree Taylor polynomial, T3(x) for f about x = 0 is

T3(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

6
f ′′′(0)x3 (9)

= 5− 3x+
1

2
x2 +

2

3
x3. (10)

Thus,

f(1.2) ∼ T3(1.2) = 4.42533. (11)

3.2 Part b

We can obtain the fourth degree Taylor polynomial, P3(x), about x = 0 for g(x) = f(x2)
by substituting x2 for x in T3(x), found above, and then truncating. This gives

P3(x) = 5− 3x2 +
1

2
x4 (12)

3.3 Part c

We can obtain the third degree Taylor polynomial Q3(x) for

h(x) =

∫ x

0
f(t) dt (13)

by integrating T3(x) term by term and truncating. We obtain

Q3(x) = 5x− 3

2
x2 +

1

6
x3. (14)
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3.4 Part d

It is not possible to determine h(1) =
∫ 1
0 f(t) dt from what it given.

If, on the one hand,

f(x) = 5− 3x+
1

2
x2 +

2

3
x3 − 1

6
x4, (15)

then f meets all of the given conditions, and

h(1) =

∫ 1

0

(
5− 3t+

1

2
t2 +

2

3
t3 − 1

6
t4
)
dt (16)

=

(
5t− 3

2
t2 +

1

6
t3 − 1

6
t4 − 1

30
t5
) ∣∣∣∣1

0

(17)

=
19

5
. (18)

If, on the other hand,

f(x) = 5− 3x+
1

2
x2 +

2

3
x3 − 1

6
x5, (19)

then, again, f meets all of the given conditions, but

h(1) =

∫ 1

0

(
5− 3t+

1

2
t2 +

2

3
t3 − 1

6
t5
)
dt (20)

=

(
5t− 3

2
t2 +

1

6
t3 − 1

6
t4 − 1

36
t6
) ∣∣∣∣1

0

(21)

=
137

6
. (22)

4 Problem 4

4.1 Part a

See Figure 1
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Figure 1: Problem 4, Part a
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4.2 Part b

The Euler’s Method recursion for this problem is given by

h = 0; (23)
x0 = 0; (24)
y0 = 3; (25)
xk = xk−1 + h, when k > 0; (26)

yk = yk−1 +
xk−1yk−1

2
h, when k > 0. (27)

Thus,

x1 = 0 + 0.1 = 0.1; (28)

y1 = 3 +
0 · 3
2
· (0.1) = 3; (29)

x2 = 0.1 + 0.1 = 0.2; (30)

y2 = 3 +
(0.1) · 3

2
· (0.1) = 3.015. (31)

So f(0.2) ∼ 3.015.

4.3 Part c

Let f be a particular solution to the differential equation 2y′ = xy, that satisfies f(0) = 3.
Then 2f ′(x) = xf(x) in some open interval I centered at x = 0. Because f(0) = 3 and f
is the solution to a differential equation, we may assume that f is continuous on I , and,
indeed, that f(x) > 0 on I . Thus, throughout I ,

f ′(x)

f(x)
=
x

2
, (32)

and if x is any point of I , ∫ x

0

f ′(ξ)

f(ξ)
dξ =

1

2

∫ x

0
ξ dξ. (33)

(34)
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The function f taking on only positive values throughout the interval of integration, and
f(0) having the value 3, we can rewrite this as

ln f(ξ)

∣∣∣∣x
0

=
1

4
ξ2
∣∣∣∣x
0

; (35)

ln f(x)− ln f(0) =
1

4
x2; (36)

ln f(x) =
1

4
x2 + ln 3; (37)

f(x) = 3ex
2/4. (38)

Thus,

f(0.2) = 3e0.01 ∼ 3.03015. (39)

5 Problem 5

5.1 Part a

See Figure 2.
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Figure 2: Problem 5, Part a
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5.2 Part b

The average temperature is

1

14− 6

∫ 14

6

(
80− 10 cos

πt

12

)
dt =

1

8

(
80t− 120

π
sin

πt

12

) ∣∣∣∣14
6

(40)

=
1

2

(
160 +

45

π

)
∼ 87.16197◦. (41)

To the nearest degree, this is 87◦.

5.3 Part c

Examination of Figure 2 shows that an approximate answer is 5 ≤ t ≤ 19. Numerical
solution of the equation

78 =

(
80− 10 cos

πt

12

)
(42)

yields t ∼ 5.24087 for the left-hand solution, and t ∼ 18.76913 for the right-hand solution.
We conclude that the air condition ran when 5.24087 ≤ t ≤ 18.76913. (Although, in
this context, accuracy of more than a single digit to the right of the decimals is probably
silly.)

5.4 Part d

The approximate total cost is

0.05

∫ 18.76913

5.24087

(
2− 10 cos

πt

12

)
dt ∼ 5.09637. (43)

We have evaluated the integral numerically, because we know the limits of integration
only approximately and there is little point it trying for an “exact” integral.

6 Problem 6

6.1 Part a

If

x′(t) =
1√

2t+ 1
, (44)
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and x(0) = −4,then, by the Fundamental Theorem of Calculus,

x(t) = x(0) +

∫ t

0
x′(τ) dτ (45)

= −4 +
∫ t

0

dτ√
2τ + 1

(46)

= −4 +
√
2τ + 1

∣∣∣∣t
0

(47)

= −4 +
√
2t+ 1− 1 =

√
2t+ 1− 5. (48)

6.2 Part b

y(t) = [x(t)]3 − 3x(t), so (49)

y′(t) = 3[x(t)]2x′(t)− 3x′(t) = 3
(
[x(t)]2 − 1

)
x′(t). (50)

It now follows that

y′(t) =
3
[(√

2t+ 1− 5
)2

+ 1
]

√
2t+ 1

(51)

6.3 Part c

Location when t = 4 is given by,

x(4) =
√
2 · 4− 1− 5 = −2, (52)

y(4) = x3 − 3x = (−2)3 − 3 · (−2) = −2. (53)

Also,

x′(4) =
1√

2 · 4 + 1
=

1

3
, (54)

while

y′(4) = 3
(
[x(4)]2 − 1

)
x′(4) = 3 · (4− 1) · 1

3
= 3. (55)

Speed at t = 4 is then√
[x′(4)]2 + [y′(4)]2 =

√
1

9
+ 9 =

√
82

3
∼ 3.01846. (56)
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