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1 Problem1

1.1 Parta

The area of the region R is
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=16 — 2\/5 ~ 13.73726. (1)
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1.2 Partb

The volume of the solid generated by revolving R about the z-axis is
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1.3 Partc
We have
k 2 32 1
o 3/2 — e 5/2 ~ 1.4
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Equating this quantity to half of the volume given in (4) and solving numerically, we find
that k ~ 0.80489.

2 Problem 2

2.1 Parta

We observe first that

. . 2z
lim 2ze%* = lim .
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Numerator and denominator of this last fraction both become infinite as x — —o0, so we
may attempt 'Hopital’s Rule. This gives

) 2z ) 2
xggloo e—2x xEIPm W =90, (7)
and we conclude that
lim 2ze* = 0. (8)
T——00

2.2 Partb

If f(x) = 22€?®, then f'(z) = (2 + 42)e?®, which is defined for all real . Thus, f'(z) = 0
only when z = —1/2, so f has just one critical point—which lies at z = —1/2. But €?* > 0
for all z, while 2 + 4z < 0 on (—o0, —1/2) but 2z +4 > 0 on (—1/2,00). So f'(z) < 0 on
(=00, —1/2),and f'(x) > 0on (—1/2,00). Because f is everywhere continuous!, it follows
that f is a strictly decreasing function on (—oo, —1/2], but that f is a strictly increasing
function on [—1/2,00). That is, if z < —1/2 then f(z) > f(—1/2) while if z > —1/2 then
f(z) > f(—1/2). Consequently, f(—1/2) = —e~! is an absolute minimum for f(x).

2.3 Partc

By our conclusion in Part b, above, the observation that lim,_, 2xe?* = 00, and the
continuity of f, we see that the range of f is [—e~!, o).

!Continuity allows us to extend our conclusions of monotonicity to the finite endpoints of both intervals



24 Partd

We put fy(z) = bre®®, and we find that f,/(z) = (b + b%z)e?®. If b > 0, we argue as in Parts
a and b, above, and we find that f;, has an absolute minimum at z = —1/b. This minimum
is f,(—=1/b) = —e~1, which does not depend on b. If b < 0, we obtain the same result after
the change of variables u = —x, which amounts to a reflection about the y-axis.

3 Problem 3

3.1 Parta

The third degree Taylor polynomial, T3(x) for f about x = 0 is

Ty(w) = f(0) + J' O + 5 f(0)2% + < f(0)a" ©
=5—3zr+ %x2 + §x3. (10)
Thus,
£(1.2) ~ T3(1.2) = 4.42533. (11)
3.2 Parthb

We can obtain the fourth degree Taylor polynomial, P3(z), about = = 0 for g(z) = f(z?)
by substituting 22 for = in T5(z), found above, and then truncating. This gives

1
Py(x) =5 — 32 + 5564 (12)

3.3 Partc

We can obtain the third degree Taylor polynomial Q3(z) for

o) = [ s (13)
0
by integrating 73(z) term by term and truncating. We obtain
Qalw) =50~ S + 2o (14)



3.4 Partd

It is not possible to determine h(1) = fol f(t) dt from what it given.

If, on the one hand,

1 2 1
f(z)=5—3x+ 5562 + gsc?’ — 61‘4,

then f meets all of the given conditions, and
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If, on the other hand,

1 2 1
f(z)=5—-3z+ 5:1:2 + §x3 - 6355,

then, again, f meets all of the given conditions, but
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4 Problem 4

41 Parta

See Figure 1
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Figure 1: Problem 4, Part a



4.2 Partb

The Euler’s Method recursion for this problem is given by

h=0; (23)
zo = 0; (24)
Yo = 3; (25)
Ty = Tp—1 + h, when k > 0; (26)
Y = Yk—1 T %h, when k£ > 0. (27)

Thus,
21 =0+ 0.1 = 0.1; (28)
0-3
y1:3+7~(0.1):3; (29)
2o =0.1+0.1=0.2; (30)
1) -
Yo = 3+ (© 2) 3 (0.1) = 3.015. 31)

So f(0.2) ~ 3.015.

4.3 Partc

Let f be a particular solution to the differential equation 2y’ = zy, that satisfies f(0) = 3.
Then 2f'(z) = 2z f(x) in some open interval I centered at 2 = 0. Because f(0) = 3 and f
is the solution to a differential equation, we may assume that f is continuous on I, and,
indeed, that f(z) > 0 on I. Thus, throughout I,

flz) =z
fla) 2 2
and if  is any point of I,
cre 1
| g emaf e G
(34)



The function f taking on only positive values throughout the interval of integration, and
f(0) having the value 3, we can rewrite this as

|

In f(§)| = 152 ; (35)
0 0
In f(z) ~ In f(0) = 3o (36)
In f(z) = %a:Q +1n3; (37)
fz) = 3e" /4, (38)
Thus,
£(0.2) = 3¢9 ~ 3.03015. (39)
5 Problem 5
5.1 Parta
See Figure 2.
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Figure 2: Problem 5, Part a



5.2 Partb

The average temperature is

1 14 it 1 120 .t
80 — 10cos — | dt = - ( 80t — — sin —
14—6/6 ( o8 12) 8( o 12)
1
2

45
= (160 + F) ~ 87.16197°. (41)

14

(40)
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To the nearest degree, this is 87°.

5.3 Partc

Examination of Figure 2 shows that an approximate answer is 5 < ¢ < 19. Numerical
solution of the equation

t
78 = (80 — 10 cos ;) (42)

yields ¢ ~ 5.24087 for the left-hand solution, and ¢ ~ 18.76913 for the right-hand solution.
We conclude that the air condition ran when 5.24087 < t < 18.76913. (Although, in
this context, accuracy of more than a single digit to the right of the decimals is probably
silly.)

5.4 Partd

The approximate total cost is

18.76913 <t
0.05 / (2 — 10cos ) dt ~ 5.09637. (43)
5.24087 12

We have evaluated the integral numerically, because we know the limits of integration
only approximately and there is little point it trying for an “exact” integral.

6 Problem 6

6.1 Parta

If
(t) = —— (44)
Y



and z(0) = —4,then, by the Fundamental Theorem of Calculus,
¢
x(t) = z(0) —I—/ 2 () dr
0

t
:_4+/ dr
0o V2r+1

t
=—4+V21+1

0
=4+V2t+1-1=V2t+1-5.

6.2 Partb

It now follows that

6.3 Partc

Location when ¢ = 4 is given by,

z(4)=vV2-4—1-5= -2,
y(4) =2 — 3z = (-2)3 -3 (=2) = 2.

Also,
/ 1 1
4) = —
W= ma Ty
while
Y@ =3 (@R - 1) (W) =3-(-1)- 3 =3
Speed at t = 4 is then
VI (P + [y () = % +9= ‘/52 ~ 3.01846.
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