AP Calculus 1999 BC FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

September 17, 2017

1 Problem 1

1.1 Part a

See Figure 1

Figure 1: Problem 1, Part a
When $t=0$, we have $x=0$ and $y=0$, so as t increases from 0 to π, the curve is traced out from the origin upward to the left, and around back down to its terminal point near $(7 / 2,0)$.

1.2 Part b

$$
\begin{align*}
x(t) & =\frac{t^{2}}{2}-\ln (1+t), \text { so } \tag{1}\\
x^{\prime}(t) & =t-\frac{1}{1+t} . \tag{2}
\end{align*}
$$

Thus, $x^{\prime}(t)$ is defined for all $t \in(0, \pi)$. The equation $x^{\prime}(t)=0$ becomes

$$
\begin{align*}
t-\frac{1}{1+t} & =0, \text { or } \tag{3}\\
t^{2}+t-1 & =0 . \tag{4}
\end{align*}
$$

By the Quadratic Formula, $x^{\prime}(t)=0$ for $t \in(0, \pi)$ only when $t=\frac{\sqrt{5}-1}{2} \sim 0.61803$, where it is easily checked that $x(t)<0$. Because $x(0)=0$ and $x(\pi)>0$, the minimum value for $x(t)$ on $[0, \pi]$ occurs at this only critical point. We have

$$
\begin{align*}
& x\left(\frac{\sqrt{5}-1}{2}\right) \sim-0.09924 \text { and } \tag{5}\\
& y\left(\frac{\sqrt{5}-1}{2}\right) \sim 1.73830 . \tag{6}
\end{align*}
$$

1.3 Part c

The particle is on the y-axis for $0<T<\pi$ when $x(T)=0$, or

$$
\begin{equation*}
\frac{T^{2}}{2}-\ln (1+T)=0 \tag{7}
\end{equation*}
$$

Numerical solution of this equation give $T \sim 1.28589$.

2 Problem 2

2.1 Part a

The area of the pictured region is

$$
\begin{equation*}
\int_{-2}^{2}\left(4-x^{2}\right) d x=\left.\left(4 x-\frac{1}{3} x^{3}\right)\right|_{-2} ^{2}=\left(8-\frac{8}{3}\right)-\left(-8+\frac{8}{3}\right)=\frac{32}{3} . \tag{8}
\end{equation*}
$$

2.2 Part b

Revolving the pictured region about the x-axis produces a solid whose volume is

$$
\begin{align*}
\pi \int_{-2}^{2}\left(16-x^{4}\right) d x & =\left.\pi\left(16 x-\frac{1}{5} x^{5}\right)\right|_{-2} ^{2} \tag{9}\\
& =\pi\left(32-\frac{32}{5}\right)-\pi\left(-32+\frac{32}{5}\right)=\frac{256}{5} \pi \sim 160.84954 \tag{10}
\end{align*}
$$

2.3 Part c

The required equation is

$$
\begin{equation*}
\pi \int_{-2}^{2}\left[\left(k-x^{2}\right)^{2}-(k-4)^{2}\right] d x=\frac{256}{5} \pi . \tag{11}
\end{equation*}
$$

Solution is not required. However, a tedious integration reduces the equation to

$$
\begin{equation*}
\frac{64}{3} k-\frac{256}{5}=\frac{256}{5} \tag{12}
\end{equation*}
$$

which easily gives $k=24 / 5$.

3 Problem 3

3.1 Part a

The midpoint Riemann sum with 4 subdivisions of equal length gives

$$
\begin{equation*}
\int_{0}^{24} R(t) d t \sim 10.4 \times 6+11.2 \times 6+11.3 \times 6+10.2 \times 6=258.6 \tag{13}
\end{equation*}
$$

This means that approximately 258.6 gallons of water flows out of the pipe during the time interval $0 \leq t \leq 24$.

3.2 Part b

The function R is given differentiable on $[0,24]$, so it must also be continuous on that interval. Moreover, $R(0)=9.6=R(24)$. Thus, R meets the requirements of Rolle's Theorem, and we may conclude that the must be a time, t, with $0<t<24$, such that $R^{\prime}(t)=0$.

3.3 Part c

The average rate of flow is approximately

$$
\begin{equation*}
\frac{1}{24} \int_{0}^{24} \frac{1}{79}\left(768+23 t-t^{2}\right) d t=\left.\frac{1}{24} \cdot \frac{1}{79}\left(768 t+\frac{23}{2} t^{2}-\frac{1}{3} t^{3}\right)\right|_{0} ^{24}=\frac{852}{79} \text { gallons/hour. } \tag{14}
\end{equation*}
$$

4 Problem 4

4.1 Part a

The third degree Taylor polyomial T_{3} about $x=2$ for f is

$$
\begin{align*}
T_{3}(x) & =f(0)+f^{\prime}(0)(x-2)+\frac{1}{2} f^{\prime \prime}(0)(x-2)^{2}+\frac{1}{6} f^{\prime \prime \prime}(0)(x-2)^{3} \tag{15}\\
& =-3+5(x-2)+\frac{3}{2}(x-2)^{2}-\frac{4}{3}(x-2)^{3} . \tag{16}
\end{align*}
$$

Thus,

$$
\begin{equation*}
F(1.5) \sim T_{3}(1.5)=-4.95833 \tag{17}
\end{equation*}
$$

4.2 Part b

The Lagrange estimate for the error in this approximation is

$$
\begin{equation*}
\left|f(1.5)-T_{3}(1.5)\right| \leq \frac{M}{4!}|1.5-2|^{4}, \tag{18}
\end{equation*}
$$

where M is any number such that $\left|f^{(4)}(x)\right| \leq M$ throughout the interval $[1.5,2]$. Therefore, it being given that $\left|f^{(4)}(x)\right| \leq 3$ throughout [1.5, 2],

$$
\begin{equation*}
|-4.95833-f(1.5)| \leq \frac{3}{24}|1.5-2|^{4}=0.0078125 \tag{19}
\end{equation*}
$$

But

$$
\begin{equation*}
|-4.95833-(-5)|=0.04167>0.0078125, \tag{20}
\end{equation*}
$$

so that $f(1.5)=-5$ is not possible.

4.3 Part c

$P_{4}(x)$, the fourth degree Taylor polynomial about $x=0$ for $g(x)=f\left(x^{2}+2\right)$, can be obtained by expanding and truncating $T_{3}\left(x^{2}+1\right)$. Thus,

$$
\begin{equation*}
P_{4}(x)=-3+5 x^{2}+\frac{3}{2} x^{4} . \tag{21}
\end{equation*}
$$

The coefficient of x in $Q_{4}(x)$ is $f^{\prime}(0)$, and the coefficient of x^{2} in $Q_{4}(x)$ is half of $f^{\prime \prime}(0)$. Hence, $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=3 / 2>0$. By the Second Derivative Test, f must have a local minimum at $x=0$.

5 Problem 5

5.1 Part a

On the interval $[2,4]$, the graph is symmetric about the point $(3,0)$, so the integral over $[2,4]$ is zero. Consequently,

$$
\begin{equation*}
\int_{1}^{4} f(t) d t=\int_{1}^{2} f(t) d t \tag{22}
\end{equation*}
$$

and the latter integral is the area of the trapezoid whose corners are $(1,0),(2,0),(2,1)$, and $(1,4)$, or

$$
\begin{equation*}
\frac{4+1}{2} \cdot 1=\frac{5}{2} . \tag{23}
\end{equation*}
$$

Thus,

$$
\begin{align*}
g(4) & =\frac{5}{2}, \text { and } \tag{24}\\
g(-2) & =\int_{1}^{-2} f(t) d t=-\int_{-2}^{1} f(t) d t \tag{25}
\end{align*}
$$

is the negative of the area of a triangle of base 3 , height 4 , or -6 .

5.2 Part b

By the Fundamental Theorem of Calculus,

$$
\begin{equation*}
g^{\prime}(x)=\frac{d}{d x} \int_{1}^{x} f(t) d t=f(x) . \tag{26}
\end{equation*}
$$

Hence $f^{\prime}(1)=f(1)=4$.

5.3 Part c

The absolute minimum of $g(x)$ for $-2 \leq x \leq 4$ is to be found at either, on the one hand, at one of the points $x=-2$ or $x=4$, or, on the other hand, at a value of x where $-2<x<4$ and $g^{\prime}(x)=0$. As we have seen in Part a, above, $g(-2)=-6$, and $g(4)=5 / 2$. If $g^{\prime}(x)=0$, then by our first observation in Part b, above, $f(x)=0$. This happens only at $x=3$. But f, which is g^{\prime} undergoes a change of sign from positive to negative at $x=3$, so, by the First Derivative Test, g must have a local maximum-which, because f is not a constant function, cannot also be an absolute minimum for f-at $x=3$. We see, thus, that the absolute minimum for g on $[-2,4]$ is $g(-2)=-6$.

5.4 Part d

If g is to have an inflection point at a point, then g^{\prime} must change from increasing to decreasing or from decreasing to increasing at that point. We can see from the graph that g^{\prime} changes from increasing to decreasing at $x=1$, but g^{\prime} does not change its monotonicity at $x=2$. So g has an inflection point at just one of the two points in question.

6 Problem 6

6.1 Part a

An equation for the required tangent line is

$$
\begin{equation*}
y=6+\frac{1+e^{3}}{9}(x-3) \tag{27}
\end{equation*}
$$

Substitution of 3.1 for x gives $y \sim 6.23425$.

6.2 Part b

The Euler's Method recursion for this problem is

$$
\begin{align*}
x_{0} & =3 \tag{28}\\
y_{0} & =6 \tag{29}\\
x_{k} & =x_{k-1}+0.05 \tag{30}\\
y_{k} & =y_{k-1}+\frac{1+e^{x_{k-1}}}{x_{k-1}^{2}} 0.05 . \tag{31}
\end{align*}
$$

Applying this recursion twice in succession, we obtain

$$
\begin{align*}
& x_{1}=3.05 \tag{32}\\
& y_{1}=6+\frac{1+e^{3}}{9} \cdot 0.05 \sim 6.11714 ; \tag{33}\\
& x_{2}=3.10 ; \tag{34}\\
& y_{2}=6.11714+\frac{1+e^{3.05}}{9.3025} \cdot 0.05 \sim 6.23601 . \tag{35}
\end{align*}
$$

We have

$$
\begin{equation*}
f^{\prime \prime}(x)=\frac{d}{d x} \frac{1+e^{x}}{x^{2}}=\frac{x e^{x}-2 e^{x}-2}{x^{3}} \tag{36}
\end{equation*}
$$

so $f^{\prime \prime}(x)$ is surely positive when $3 \leq x \leq 4$.. This means that tangent lines at points of the curve in the interval $3 \leq x \leq 3.1$ lie below the curve (locally, of course, and except at the point of tangency). For this reason, Euler's method underestimates each $y\left(x_{k}\right)$ when $k=1,2, \ldots$. Thus the value y_{2} we computed above is smaller than the value at 3.1 of the actual solution to the initial value problem.

6.3 Part c

By the Fundamental Theorem of Calculus,

$$
\begin{align*}
f(3.1) & =f(3)+\int_{3}^{3.1} f^{\prime}(t) d t \tag{37}\\
& =6+\int_{2}^{3.1} \frac{1+e^{t}}{t^{2}} d t \tag{38}
\end{align*}
$$

It isn't possible to evaluate this definite integral in terms of elementary function. Numerical integration gives $f(3.1) \sim 6.23777$.

