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1 Problem 1

1.1 Part a

See Figure 1
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Figure 1: Problem 1, Part a

When t = 0, we have x = 0 and y = 0, so as t increases from 0 to π, the curve is traced
out from the origin upward to the left, and around back down to its terminal point near
(7/2, 0).
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1.2 Part b

x(t) =
t2

2
− ln(1 + t), so (1)

x′(t) = t− 1

1 + t
. (2)

Thus, x′(t) is defined for all t ∈ (0, π). The equation x′(t) = 0 becomes

t− 1

1 + t
= 0, or (3)

t2 + t− 1 = 0. (4)

By the Quadratic Formula, x′(t) = 0 for t ∈ (0, π) only when t =
√
5− 1

2
∼ 0.61803, where

it is easily checked that x(t) < 0. Because x(0) = 0 and x(π) > 0, the minimum value for
x(t) on [0, π] occurs at this only critical point. We have

x

(√
5− 1

2

)
∼ −0.09924 and (5)

y

(√
5− 1

2

)
∼ 1.73830. (6)

1.3 Part c

The particle is on the y-axis for 0 < T < π when x(T ) = 0, or

T 2

2
− ln(1 + T ) = 0. (7)

Numerical solution of this equation give T ∼ 1.28589.

2 Problem 2

2.1 Part a

The area of the pictured region is∫ 2

−2

(
4− x2

)
dx =

(
4x− 1

3
x3
) ∣∣∣∣2
−2

=

(
8− 8

3

)
−
(
−8 + 8

3

)
=

32

3
. (8)
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2.2 Part b

Revolving the pictured region about the x-axis produces a solid whose volume is

π

∫ 2

−2

(
16− x4

)
dx = π

(
16x− 1

5
x5
) ∣∣∣∣2
−2

(9)

= π

(
32− 32

5

)
− π

(
−32 + 32

5

)
=

256

5
π ∼ 160.84954. (10)

2.3 Part c

The required equation is

π

∫ 2

−2

[(
k − x2

)2 − (k − 4)2
]
dx =

256

5
π. (11)

Solution is not required. However, a tedious integration reduces the equation to

64

3
k − 256

5
=

256

5
, (12)

which easily gives k = 24/5.

3 Problem 3

3.1 Part a

The midpoint Riemann sum with 4 subdivisions of equal length gives∫ 24

0
R(t) dt ∼ 10.4× 6 + 11.2× 6 + 11.3× 6 + 10.2× 6 = 258.6. (13)

This means that approximately 258.6 gallons of water flows out of the pipe during the
time interval 0 ≤ t ≤ 24.

3.2 Part b

The function R is given differentiable on [0, 24], so it must also be continuous on that
interval. Moreover, R(0) = 9.6 = R(24). Thus, R meets the requirements of Rolle’s
Theorem, and we may conclude that the must be a time, t, with 0 < t < 24, such that
R′(t) = 0.
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3.3 Part c

The average rate of flow is approximately

1

24

∫ 24

0

1

79

(
768 + 23t− t2

)
dt =

1

24
· 1
79

(
768t+

23

2
t2 − 1

3
t3
) ∣∣∣∣24

0

=
852

79
gallons/hour.

(14)

4 Problem 4

4.1 Part a

The third degree Taylor polyomial T3 about x = 2 for f is

T3(x) = f(0) + f ′(0)(x− 2) +
1

2
f ′′(0)(x− 2)2 +

1

6
f ′′′(0)(x− 2)3 (15)

= −3 + 5(x− 2) +
3

2
(x− 2)2 − 4

3
(x− 2)3. (16)

Thus,

F (1.5) ∼ T3(1.5) = −4.95833. (17)

4.2 Part b

The Lagrange estimate for the error in this approximation is

|f(1.5)− T3(1.5)| ≤
M

4!
|1.5− 2|4, (18)

whereM is any number such that |f (4)(x)| ≤M throughout the interval [1.5, 2]. Therefore,
it being given that

∣∣f (4)(x)∣∣ ≤ 3 throughout [1.5, 2],

| − 4.95833− f(1.5)| ≤ 3

24
|1.5− 2|4 = 0.0078125. (19)

But

| − 4.95833− (−5)| = 0.04167 > 0.0078125, (20)

so that f(1.5) = −5 is not possible.
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4.3 Part c

P4(x), the fourth degree Taylor polynomial about x = 0 for g(x) = f(x2 + 2), can be
obtained by expanding and truncating T3(x2 + 1). Thus,

P4(x) = −3 + 5x2 +
3

2
x4. (21)

The coefficient of x in Q4(x) is f ′(0), and the coefficient of x2 in Q4(x) is half of f ′′(0).
Hence, f ′(0) = 0 and f ′′(0) = 3/2 > 0. By the Second Derivative Test, f must have a local
minimum at x = 0.

5 Problem 5

5.1 Part a

On the interval [2, 4], the graph is symmetric about the point (3, 0), so the integral over
[2, 4] is zero. Consequently, ∫ 4

1
f(t) dt =

∫ 2

1
f(t) dt, (22)

and the latter integral is the area of the trapezoid whose corners are (1, 0), (2, 0), (2, 1),
and (1, 4), or

4 + 1

2
· 1 =

5

2
. (23)

Thus,

g(4) =
5

2
, and (24)

g(−2) =
∫ −2
1

f(t) dt = −
∫ 1

−2
f(t) dt (25)

is the negative of the area of a triangle of base 3, height 4, or −6.

5.2 Part b

By the Fundamental Theorem of Calculus,

g′(x) =
d

dx

∫ x

1
f(t) dt = f(x). (26)

Hence f ′(1) = f(1) = 4.
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5.3 Part c

The absolute minimum of g(x) for −2 ≤ x ≤ 4 is to be found at either, on the one hand, at
one of the points x = −2 or x = 4, or, on the other hand, at a value of x where −2 < x < 4
and g′(x) = 0 . As we have seen in Part a, above, g(−2) = −6, and g(4) = 5/2. If g′(x) = 0,
then by our first observation in Part b, above, f(x) = 0. This happens only at x = 3. But
f , which is g′ undergoes a change of sign from positive to negative at x = 3, so, by the
First Derivative Test, g must have a local maximum—which, because f is not a constant
function, cannot also be an absolute minimum for f—at x = 3. We see, thus, that the
absolute minimum for g on [−2, 4] is g(−2) = −6.

5.4 Part d

If g is to have an inflection point at a point, then g′ must change from increasing to de-
creasing or from decreasing to increasing at that point. We can see from the graph that g′

changes from increasing to decreasing at x = 1, but g′ does not change its monotonicity at
x = 2. So g has an inflection point at just one of the two points in question.

6 Problem 6

6.1 Part a

An equation for the required tangent line is

y = 6 +
1 + e3

9
(x− 3). (27)

Substitution of 3.1 for x gives y ∼ 6.23425.

6.2 Part b

The Euler’s Method recursion for this problem is

x0 = 3; (28)
y0 = 6; (29)
xk = xk−1 + 0.05; (30)

yk = yk−1 +
1 + exk−1

x2k−1
0.05. (31)
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Applying this recursion twice in succession, we obtain

x1 = 3.05; (32)

y1 = 6 +
1 + e3

9
· 0.05 ∼ 6.11714; (33)

x2 = 3.10; (34)

y2 = 6.11714 +
1 + e3.05

9.3025
· 0.05 ∼ 6.23601. (35)

We have

f ′′(x) =
d

dx

1 + ex

x2
=
xex − 2ex − 2

x3
, (36)

so f ′′(x) is surely positive when 3 ≤ x ≤ 4.. This means that tangent lines at points of
the curve in the interval 3 ≤ x ≤ 3.1 lie below the curve (locally, of course, and except at
the point of tangency). For this reason, Euler’s method underestimates each y(xk) when
k = 1, 2, . . .. Thus the value y2 we computed above is smaller than the value at 3.1 of the
actual solution to the initial value problem.

6.3 Part c

By the Fundamental Theorem of Calculus,

f(3.1) = f(3) +

∫ 3.1

3
f ′(t) dt (37)

= 6 +

∫ 3.1

2

1 + et

t2
dt. (38)

It isn’t possible to evaluate this definite integral in terms of elementary function. Numer-
ical integration gives f(3.1) ∼ 6.23777.
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