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1 Problem1

1.1 Parta

See Figure 1

Figure 1: Problem 1, Part a

When t = 0, we have x = 0 and y = 0, so as ¢ increases from 0 to w, the curve is traced
out from the origin upward to the left, and around back down to its terminal point near

(7/2,0).



1.2 Partb

2

2(t) = % —In(141), so (1)
o'(t)=t— 11+t )

Thus, 2/(t) is defined for all ¢ € (0, 7). The equation 2’/(t) = 0 becomes

1
t———=0 3
1re 3)

2+t—1=0. 4)

Vo1 ~ 0.61803, where

it is easily checked that z(t) < 0. Because z(0) = 0 and z(7) > 0, the minimum value for
x(t) on [0, w] occurs at this only critical point. We have

By the Quadratic Formula, 2/(t) = 0 for ¢ € (0, 7) only when t =

z <\/52_ 1) ~ —0.09924 and (5)
y <\/2 1) ~ 1.73830. (6)

1.3 Partc

The particle is on the y-axis for 0 < 7' < # when z(T") = 0, or

2

% CIn(147T)=0. @)

Numerical solution of this equation give 7" ~ 1.28589.

2 Problem 2

2.1 Parta

The area of the pictured region is

[ )l <63 (s+)-2 o

2




2.2 Partb

Revolving the pictured region about the z-axis produces a solid whose volume is

2 1
7r/ (16 - 934) der=m <163: — l'5>
9 5 5

32 32 256
= (32 — 5) -7 <—32 + 5) =5 160.84954.
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2.3 Partc

The required equation is

W/Q (k= 2%)? = (k= 2] d:v:?m

—2
Solution is not required. However, a tedious integration reduces the equation to

64, 256 _ 256
3 5 5
which easily gives k = 24/5.

3 Problem 3

3.1 Parta
The midpoint Riemann sum with 4 subdivisions of equal length gives

24
/ R(t)dt ~ 104 x6+11.2 x 6+ 11.3 x 6 4+ 10.2 x 6 = 258.6.
0

©)

(10)

(11)

(12)

(13)

This means that approximately 258.6 gallons of water flows out of the pipe during the

time interval 0 < ¢ < 24.

3.2 Partb

The function R is given differentiable on [0, 24], so it must also be continuous on that
interval. Moreover, R(0) = 9.6 = R(24). Thus, R meets the requirements of Rolle’s
Theorem, and we may conclude that the must be a time, ¢, with 0 < ¢t < 24, such that

R(t) =0



3.3 Partc

The average rate of flow is approximately

1 [ ) 11 23, 15\ [* 852
— — — = .= —tt—= = —— gall hour.
21 ), 70 (768 + 23t — t°) dt 51 79 (7681& + ot -5t ) ) -g 82 ons/hour
(14)
4 Problem4
4.1 Parta
The third degree Taylor polyomial T3 about x = 2 for f is
1 1
Ty(w) = £(0) + f'(0)(z = 2) + 5 £"(0) (& = 2)* + £ /" (0) (= — 2)° (15)
:—3+5(m—2)+g(x—Z)Q—g(a;—2)3. (16)
Thus,
F(1.5) ~ T3(1.5) = —4.95833. (17)
4.2 Partb
The Lagrange estimate for the error in this approximation is
|£(1.5) = T3(1.5)] < %11.5—214, (18)

where M is any number such that | f(Y)(z)| < M throughout the interval [1.5, 2]. Therefore,
it being given that | f(*)(z)| < 3 throughout [1.5,2],

3
| —4.95833 — f(1.5)| < ﬂ|1.5 — 2|4 = 0.0078125. (19)
But

| — 4.95833 — (—5)| = 0.04167 > 0.0078125, (20)

so that f(1.5) = —5 is not possible.



4.3 Partc

Py(z), the fourth degree Taylor polynomial about 2 = 0 for g(z) = f(2? + 2), can be
obtained by expanding and truncating 75(z% + 1). Thus,

3
Py(z) = =3+ 52 + 5904. (21)

The coefficient of z in Q(z) is f/(0), and the coefficient of 22 in Q4(z) is half of f”(0).
Hence, f/(0) = 0 and f”(0) = 3/2 > 0. By the Second Derivative Test, f must have a local
minimum at x = 0.

5 Problem 5

5.1 Parta

On the interval [2,4], the graph is symmetric about the point (3,0), so the integral over
[2,4] is zero. Consequently,

4 2
/1f(t)dt:/1 f(t)dt, (22)

and the latter integral is the area of the trapezoid whose corners are (1,0), (2,0), (2,1),
and (1,4), or

4+1 5
l=2 (23)
Thus,
g(4) = g and (24)
—2 1
9(~2) = / f(tydi = — / poK (25)

is the negative of the area of a triangle of base 3, height 4, or —6.

5.2 Partb

By the Fundamental Theorem of Calculus,

g@) =5 [ rd=s(a). (26)
Hence f'(1) = f(1) = 4.



5.3 Partc

The absolute minimum of g(x) for —2 < x < 4 is to be found at either, on the one hand, at
one of the points x = —2 or x = 4, or, on the other hand, at a value of x where —2 < z < 4
and ¢'(z) = 0. As we have seen in Part a, above, g(—2) = —6, and g(4) = 5/2. If ¢'(x) = 0,
then by our first observation in Part b, above, f(z) = 0. This happens only at z = 3. But
f, which is ¢’ undergoes a change of sign from positive to negative at x = 3, so, by the
First Derivative Test, ¢ must have a local maximum—which, because f is not a constant
function, cannot also be an absolute minimum for f—at x = 3. We see, thus, that the
absolute minimum for g on [—2, 4] is g(—2) = —6.

5.4 Partd

If g is to have an inflection point at a point, then ¢’ must change from increasing to de-
creasing or from decreasing to increasing at that point. We can see from the graph that ¢’
changes from increasing to decreasing at z = 1, but ¢’ does not change its monotonicity at
x = 2. So g has an inflection point at just one of the two points in question.

6 Problem 6

6.1 Parta

An equation for the required tangent line is

1+e3

=6
Yy Ty

(x —3). (27)

Substitution of 3.1 for = gives y ~ 6.23425.

6.2 Partb

The Euler’s Method recursion for this problem is

Tro — 3; (28)
Yo = 6; (29)
xr = xp—1 + 0.05; (30)
1+ e*r1
Yk = Yp—1 + ———0.05. (31)
Th—1



Applying this recursion twice in succession, we obtain

x1 = 3.05; (32)
=64+ ¢ 0.05~ 6.11714; (33)
z9 = 3.10; (34)
ys = 6.11714 + 1928;;5 -0.05 ~ 6.23601. (35)
We have
f”(:r)— d1+ex::1:ex—26x—2’ (36)

dx 2 3

so f"(z) is surely positive when 3 < z < 4.. This means that tangent lines at points of
the curve in the interval 3 < x < 3.1 lie below the curve (locally, of course, and except at
the point of tangency). For this reason, Euler’s method underestimates each y(zx) when
k =1,2,.... Thus the value y» we computed above is smaller than the value at 3.1 of the
actual solution to the initial value problem.

6.3 Partc

By the Fundamental Theorem of Calculus,

3.1
f3.1)=f(3)+ , f(t)dt (37)
3.1 14+ et
=6+ /2 ——dt. (38)

It isn’t possible to evaluate this definite integral in terms of elementary function. Numer-
ical integration gives f(3.1) ~ 6.23777.



