
AP Calculus 2000 BC FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics

Metropolitan State University of Denver

August 9, 2017

1 Problem 1

1.1 Part a

We must first locate the first intersection of the curves y = e−x
2

and y = 1 − cosx to the
right of the y-axis. Solving numerically for b, we find that the smallest positive value of b
for which e−b

2
= 1 − cos b is b ∼ 0.94194. A numerical integration then gives the area of

the region R as ∫ b

0

[
e−x

2 − (1− cosx)
]
dx ∼ 0.59096. (1)

1.2 Part b

By the method of washers and a numerical integration, the volume generated when R is
revolved about the x-axis is

π

∫ b

0

[
e−2x

2 − (1− cosx)2
]
dx ∼ 1.74661. (2)

1.3 Part c

Another numerical integration gives this volume as

π

∫ b

0

[
e−x

2 − (1− cosx)
]2
dx ∼ 0.46106. (3)
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2 Problem 2

2.1 Part a

From the graph of runner A’s velocity, we see that her velocity at time t = 2 is
20

3
meters

per second. Runner B’s velocity at time t is given as
24t

2t+ 3
, so runner B’s velocity at time

t = 2 is
24 · 2

2 · 2 + 3
=

48

7
meters per second.

2.2 Part b

Acceleration is the derivative, taken with respect to time, of velocity. In the case of runner

A, the slope of the velocity curve at time t = 2 is
10

3
, so her acceleration at time t = 2 is

10

3
meters per second per second. For runner B, we have

d

dt

(
24t

2t+ 3

) ∣∣∣∣
t=2

=
24(2t+ 3)− 24t · 2

(2t+ 3)2

∣∣∣∣
t=2

=
72

(2t+ 3)2

∣∣∣∣
t=2

=
72

49
meters/sec/sec. (4)

2.3 Part c

When velocity is non-negative, as in the circumstances of this problem, distance traveled
is the integral of velocity. Hence, reasoning from the graph of runner A’s velocity, we find
that the distance, in meters, runner A covered during 0 ≤ t ≤ 10 is the sum of the area of
a triangle of base 3, altitude 10 and the area of a rectangle of base 7, altitude 10, or

1

2
· 3 · 10 + 7 · 10 = 85 meters (5)

During the same time interval, runner B covered∫ 10

0

24t

2t+ 3
dt =

∫ 10

0

[
24t+ 36

2t+ 3
− 36

2t+ 3

]
dt (6)

=

∫ 10

0

[
12− 36

2t+ 3

]
dt (7)

= [12t− 18 ln(2t+ 3)]

∣∣∣∣10
0

= 120 + 18 ln
3

23
∼ 83.33612 meters. (8)
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3 Problem 3

We are given

1. The Taylor series for f about x = 5 converges to f(x) on an unspecified interval of
convergence.

2. [For all non-negative integers n]

f (n)(5) =
(−1)nn!
2n(n+ 2)

. (9)

3.

f(5) =
1

2
. (10)

(This is given explicitly, even though it is a consequence of equation (9).)

3.1 Part a

The third-degree Taylor polynomial, T3(x) for f about 5 is

T3(x) =
3∑

n=0

f (n)(5)

n!
(x− 5)n (11)

=
1

2
− 1

6
(x− 5) +

1

16
(x− 5)2 − 1

40
(x− 5)3 (12)

3.2 Part b

Writing
∞∑
k=0

ak(x− 5)k for the Taylor series of f about x = 5, we know that

ak =
f (k)(5)

k!
=

(−1)k

2k(k + 2)
for k = 0, 1, . . . . (13)

Thus,

lim
k→∞

∣∣∣∣ak+1(x− 5)k+1

ak(x− 5)k

∣∣∣∣ = lim
k→∞

k + 2

2(k + 3)
|x− 5| = 1

2
|x− 5|. (14)

By the Ratio Test, the series converges absolutely when this limit is less than 1 and di-
verges when this limit is greater than 1. We conclude that the desired radius of conver-
gence is 2.
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3.3 Part c

When x = 6, the Taylor series becomes

∞∑
k=0

ak(x− 5)k =
1

2
− 1

6
+

1

16
− 1

40
+ · · ·+ (−1)k

2k(k + 2)
+ · · · . (15)

As k increases, both 2k and k+2 increase, so the quotient 1
2k(k+2)

decreases monotonically
to zero as k → ∞. By the Alternating Series Test, the error in replacing f(6) with the
sum of the first seven terms of the series (that is, the degree six Taylor polynomial) is at
most

1

27(7 + 2)
=

1

128 · 9
=

1

1152
<

1

1000
. (16)

4 Problem 4

4.1 Part a

The acceleration vector is the derivative of the velocity vector, taken with respect to time:

a(t) =
d

dt
v(t) =

d

dt

〈
1− 1

t2
, 2 +

1

t2

〉
(17)

=

〈
2

t3
,− 2

t3

〉
. (18)

Thus,

a(3) =

〈
2

27
,− 2

27

〉
. (19)
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4.2 Part b

Position r(t) at time t is

r(t) = 〈2, 6〉+
∫ t

1
v(τ) dτ (20)

= 〈2, 6〉+
∫ t

1

〈
1− 1

τ2
, 2 +

1

τ2

〉
dτ (21)

= 〈2, 6〉+
〈
τ +

1

τ
, 2τ − 1

τ

〉 ∣∣∣∣t
1

(22)

= 〈2, 6〉+
〈
t+

1

t
, 2t− 1

t

〉
− 〈2, 1〉 (23)

=

〈
t+

1

t
, 5 + 2t− 1

t

〉
. (24)

Thus,

r(3) =

〈
10

3
,
32

3

〉
. (25)

4.3 Part c

We have v(t) = 〈x′(t), y′(t)〉 so the slope m(t) of the tangent line to the position curve at
time t is

m(t) =
y′(t)

x′(t)
=

2 + t−2

1− t−2
=

2t2 + 1

t2 − 1
. (26)

For this to be 8 we must have 2t2 + 1 = 8t2 − 8, or 6t2 = 9. The only positive solution for
this equation is t =

√
3/2 ∼ 1.22474

4.4 Part d

From (25), position, r(t), is given by

r(t) =

〈
t+

1

t
, 5 + 2t− 1

t

〉
(27)

We let P(t) = 〈t, 5 + 2t〉, and we note that

‖r(t)−P(t)‖ =
∥∥∥∥〈1

t
,−1

t

〉∥∥∥∥ =
2

|t|
→ 0 as t→ ±∞. (28)
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The particle’s path is therefore asymptotic to the path given by P(t) as t → ±∞. But this
path is the straight line through (0, 5) with slope 2, or the line with Cartesian equation
y = 2x+ 5.

5 Problem 5

5.1 Part a

If (x, y) is a point on the curve given by the equation xy2 − x3y = 6 and the equation
defines y implicitly as a function of x near that point, then

d

dx

(
xy2 − x3y

)
=

d

dx
6; (29)

y2 + 2xy
dy

dx
− 3x2y − x3 dy

dx
= 0; (30)

(2xy − x3)dy
dx

= 3x2y − y2; (31)

dy

dx
=

3x2y − y2

2xy − x3
, (32)

as required.

5.2 Part b

If the point (1, y) lies on the curve, then

1 · y2 − 13 · y = 6, or (33)

y2 − y − 6 = 0; (34)
(y − 3)(y + 2) = 0. (35)

There are, consequently, two such points: (1, 3) and (1,−2). We have

dy

dx

∣∣∣∣
(1,3)

=
3 · 12 · 3− 32

2 · 1 · 3− 13
= 0, (36)

so that the line tangent to the curve at (1, 3) has equation y = 3.

At (1,−2), we have

dy

dx

∣∣∣∣
(1,−2)

=
3 · 12 · (−2)− (−2)2

2 · 1 · (−2)− (1)3
=
−10
−5

= 2. (37)
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An equation for the line tangent to the curve at (1,−2) is therefore y = −2 + 2(x − 1), or
y = 2x− 4.

5.3 Part c

At a point where the tangent to the curve is vertical, we can’t expect that the equation
defines y implicitly as a function of x, so differentiation with respect to x is meaningless.
Therefore, we assume that the equation gives x as a function of y, and we carry out an
implicit differentiation with respect to y:

d

dy

(
xy2 − x3y

)
=

d

dy
6; (38)

2xy + y2
dx

dy
− x3 − 3x2y

dx

dy
= 0; (39)

dx

dy
=

x3 − 2xy

y2 − 3x2y
. (40)

At a point with a vertical tangent,
dx

dy
must vanish, so x3−2xy must be zero—that is x = 0

or y = x2/2. But xy2 − x3y = 6, so x = 0 is not possible. if y = x2/2, on the other hand,
then

xy2 − x3y = 6 becomes (41)

x

(
x2

2

)2

− x3
(
x2

2

)
= 6. (42)

The only real solution for this equation is easily seen to be x = − 5
√
24, and the correspond-

ing point on the curve is
(
− 5
√
24, 5
√
18
)
.

We would like to conclude that the tangent line to the curve at the point
(
− 5
√
24, 5
√
18
)

is
vertical. Strictly speaking, we must check to be sure that the denominator on the right
side of equation (40) doesn’t vanish at this point before we may draw this conclusion, but
the readers probably didn’t care. (To see why this last step is necessary, consider the curve
y2 = x2 at the origin.)

6 Problem 6

6.1 Part a

See Figure 1.
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Figure 1: Problem 6, Part a

6.2 Part b

No solution could have the graph shown because the slope field requires any solution
that passes through a point that lies on the line y = 1 to have zero slope at that point. The
graph shown has non-zero slopes at the two points where it crosses the line y = 1.

6.3 Part c

If y = f(x) is a solution to the differential equation y′ = x(y − 1)2 for which f(0) = −1,
Then

f ′(ξ) = ξ[f(ξ)− 1]2. (43)

As the solution to a differential equation, f must be continuous at ξ = 0, so from f(0) = −1
it follows that f(ξ) − 1 < 0 for all ξ in some open interval I centered at ξ = 0. We
may therefore divide both sides of (43) by f(ξ) − 1, and the resulting equation will be a
statement about functions that are continuous, at least on the interval I . If x is any point
in I , we may then write ∫ x

0

f ′(ξ)

[f(ξ)− 1]2
dξ =

∫ x

0
ξ dξ. (44)
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Equivalently,

− 1

f(ξ)− 1

∣∣∣∣x
0

=
ξ2

2

∣∣∣∣x
0

; (45)

1

1− f(x)
− 1

2
=
x2

2
. (46)

Solving for f(x), we find that

f(x) =
x2 − 1

x2 + 1
. (47)

6.4 Part d

We solve equation (43) for x2 in terms of y, and we learn that

x2 =
1 + y

1− y
. (48)

Now, whatever x may be, x2 ≥ 0, so there can be a y corresponding to a real number

x if, and only if, the quantity
1 + y

1− y
is non-negative. For this to be so, either y = −1,

or the quantities 1 + y and 1 − y have the same sign. Both can’t be negative, because
1 + y < 0 ⇒ y < −1, while 1− y < 0 ⇒ 1 < y, and no number is simultaneously smaller
than −1 and larger then 1. On the other hand, both are positive when −1 < y < 1, so the
range of this solution is {y : − 1 ≤ y < 1}.
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