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1 Problem 1

1.1 Part a

The object is at (4, 5) when t = 2 so the slope of the line tangent to the curve when t = 2 is
the value of

dy

dx
=
dy/dt

dx/dt
(1)

when t = 2, or

dy

dx

∣∣∣
t=2

=
3 sin 22

cos 23
= 3 sin 4 sec 8. (2)

An equation for the required tangent line is thus y = 5 + 3 sin 4 sec 8(x− 4).

1.2 Part b

The speed σ of the object is given by

σ(t) =

√
[x′(t)]2 + [y′(t)]2. (3)

Thus

σ(2) =
√
9 sin2 4 + cos2 8 (4)
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1.3 Part c

Distance traveled during the interval 0 ≤ t ≤ 1 is∫ 1

0
σ(t) dt =

∫ 1

0

√
9 sin2 t2 + cos2 t3 dt ∼ 2.37638, (5)

where we have carried out the integration numerically.

1.4 Part d

The position of the object at t is given by

(x(t), y(t)) =

(
x(2) +

∫ t

2
x′(τ) dτ, y(2) +

∫ t

2
y′(τ) dτ

)
(6)

=

(
4 +

∫ t

2
cos τ3 dτ, 5 + 3

∫ t

2
sin τ2 dτ

)
. (7)

Thus (
x(3), y(3)

)
=

(
4 +

∫ 3

2
cos τ3 dτ, 5 + 3

∫ 3

2
sin τ2 dτ

)
∼ (3.95350, 4.90636), (8)

where, again, we have integrated numerically.

2 Problem 2

2.1 Part a

We have

W ′(12) ∼ W (15)−W (9)

15− 9
=

21− 24

6
= −1

2
degrees C/day. (9)

2.2 Part b

The required trapezoidal approximation to the average value is

1

15− 0
· 20 + 2 · 31 + 2 · 28 + 2 · 24 + 2 · 22 + 21

2
· 3 =

251

10
. (10)
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2.3 Part c

If P is given by

P (t) = 20 + 10te−t/3, (11)

then

P ′(t) = 10e−t/3 − 10

3
te−t/3, (12)

and

P ′(12) = −30e−4 ∼ −0.54947. (13)

Ar the beginning of the twelfth day, the water temperature is decreasing1 at a rate of about
0.54947 degrees Celsius per day.

2.4 Part d

The required average value is

1

15

∫ 15

0
P (t) dt ∼ 25.75743 degrees Celsius. (14)

3 Problem 3

3.1 Part a

When t is near 2, the graph shows that acceleration is near 15 ft/sec2. This is a positive
number, so velocity is increasing2 in the vicinity of t = 2.

3.2 Part b

The portion of the acceleration curve on the interval 6 ≤ t ≤ 12 is symmetric, about the
point (6, 0), with the portion of the acceleration curve on the interval (0, 6). Consequently,
the integral of acceleration from 0 to 12 (which is total change in velocity over that inter-
val) is zero. Thus, velocity at t = 12 is 55 feet per second.

1But see the note to Problem 3, Part a.
2We have phrased our answer this way because the phrase “increasing at t = 2” is not defined in most

calculus textbooks. In this context, the term “increasing” applies only to functions known on intervals.
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3.3 Part c

The car’s absolute maximum velocity for 0 ≤ t ≤ 18 is 115 ft/sec, which is the velocity
it attains when t = 6. Thereafter it decreases as long as acceleration is negative—that
is, while 6 ≤ t ≤ 14. Finally, it increases again while 14 ≤ t ≤ 18. However, the area
under the acceleration curve on the latter interval is smaller than the area between the
acceleration curve and the t-axis on the interval 6 ≤ t ≤ 14, so the total increase in velocity
that accrues while 14 ≤ t ≤ 18 does not balance out the total decrease that accrued while
6 ≤ t ≤ 14.

This means that velocity attains its absolute maximum for 0 ≤ t ≤ 18 when t = 6. We
calculate this maximum value by finding the area of the trapezoid over the interval 0 ≤
t ≤ 6, which is

2 + 6

2
· 15 = 60, (15)

and adding it to the initial velocity, 55, to obtain a maximal velocity of 115 ft/sec.

3.4 Part d

The car never reaches a velocity of 0 ft/sec. In fact, the absolute minimum velocity at-
tained by the car occurs when t = 16, and this velocity is the sum of 55 ft/sec, the area of
the region above the t-axis in the interval [0, 6], and the negative of the area of the region
below the t-axis in the interval [6, 16], or 55 + 60− 105 = 10 ft/sec.

4 Problem 4

4.1 Part a

If

h′(x) =
x2 − 2

x
=

(
x−
√
2
)(
x+
√
2
)

x
, (16)

then h′(x) = 0 when x = ±
√
2, so the graph of h has a horizontal tangent when x = ±

√
2.

We note that

• h′(x) < 0 for x < −
√
2;

• h′(x) > 0 for −
√
2 < x < 0;
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• h′(x) < 0 for 0 < x <
√
2;

• h′(x) > 0 for
√
2 < x.

Thus, by the First Derivative Test, h has a local minimum at x = −
√
2, and h has a local

minimum at x =
√
2.

Note: The quantity h′(0) is undefined, but x = 0 fails to be a critical point for h. This is
because h itself need not be defined at x = 0.

4.2 Part b

We have

h′′(x) =
d

dx

[
x− 2x−1

]
= 1 +

2

x2
, (17)

which is always positive—except, of course, when x = 0. Hence h is concave upward on
(−∞, 0) and on (0,∞). Whether we should list the closures of these intervals depends
very much on which of several inequivalent definitions for concavity we use; the decision
does not affect grading.

4.3 Part c

The equation of the line tangent to the graph of h at x = 4 is

6 = h(4) + h′(4)(x− 4), or (18)

y = (−3) + 42 − 2

4
(x− 4). (19)

This can be rewritten as

y =
7

2
x− 17. (20)

4.4 Part d

We have h′′(x) = 1 + 2x−2, so that h′′(x) > 1 for all x 6= 0. Thus, h′ is increasing on [4,∞),
and h′(x) > h(4) = 7/2 for all x > 4. Consequently,

h(x)− x(4) =
∫ x

4
h′(ξ) dξ >

∫ x

4

7

2
dξ =

7

2
(x− 4), (21)
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again for all x > 4. Thus, when x > 4, we have

h(x) >
7

2
(x− 4) + h(4) =

7

2
x− 17. (22)

But the right-hand side of (22) is just the right-hand side of the equation of the tangent
line to h at (4,−3) as given in (20). Thus, the line tangent to the graph of y = h(x) at x = 4
lies below the graph of h for x > 4.

5 Problem 5

5.1 Part a

If f ′(x) = −3xf(x), with f(1) = 4 and limx→∞ f(x) = 0, then∫ ∞
1

[−3xf(x)] dx = lim
T→∞

∫ T

1
f ′(x) dx (23)

= lim
T→∞

[f(T )− f(1)] (24)

= 0− 4 = −4. (25)

5.2 Part b

We have f ′(1) = −3 · 1 · 4 = −12, so the linearization of f at the point (1, 4) is

L1(x) = 4− 12(x− 1). (26)

Putting x = 3/2, we obtain

L1

(
3

2

)
= 4− 6 = −2, (27)

and we take this as the approximate value of f
(
3
2

)
. Then the approximate slope of f when

x = 3
2 is

f ′
(
3

2

)
= −3

(
3

2

)
f

(
3

2

)
∼ 9, (28)

so the linearization corresponding to x = 3
2 is

L3/2(x) = −2 + 9

(
x− 3

2

)
. (29)

Thus,

f(2) ∼ L3/2(2) =
5

2
. (30)
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5.3 Part c

If f ′(x) = −3xf(x), with f(1) = 4, then, f being a solution to a differential equation near
x = 1, f must be a continuous function taking on positive values on some open interval
centered at x = 1. In particular, f does not vanish in such an interval. Thus, for any x
sufficiently close to 1, we may write∫ x

1

f ′(ξ)

f(ξ)
dξ = −3

∫ x

1
ξ dξ, (31)

or

ln f(ξ)

∣∣∣∣x
1

= −3

2
ξ2
∣∣∣∣x
1

, (32)

or

ln f(x)− ln 4 =
3

2
− 3

2
x2. (33)

Solving, we find that

f(x) = 4 exp

[
3

2
(1− x2)

]
, (34)

where we have used the common notation expu for eu.

6 Problem 6

6.1 Part a

The solution to this part of Problem 6 will follow from later work, and will be given
then.

6.2 Part b

We have

f(x)− 1

3
=

2

32
x+

3

33
x2 + · · ·+ n+ 1

3n+1
xn + · · · , (35)
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so the series expansion for the quotient is

f(x)− 1/3

x
=

2

32
+

3

33
x+ · · ·+ n+ 1

3n+1
xn−1 + · · · (36)

Thus

lim
x→0

f(x)− 1/3

x
=

2

9
. (37)

6.3 Parts a, c, & d

Integrating term by term, we have∫ x

0
f(ξ) dξ =

1

3
x+

1

32
x2 +

1

33
x3 + · · ·+ 1

3n+1
xn+1 + · · · (38)

This latter is a geometric series with common ratio x/3, which converges when |x| < 3.
Thus, ∫ x

0
f(ξ) dξ =

x

3
· 1

1− x/3
=

x

3− x
(39)

for −3 < x < 3.

In particular, ∫ 1

0
f(ξ) dξ =

1

3
+

1

32
+

1

33
+ · · ·+ 1

3n+1
+ · · · = 1

3− 1
=

1

2
, (40)

and this is the solution to Parts c & d.

The interior of the interval of convergence for the integrated series must be the same as
that for the original series. We note that this is (almost) the solution to Part a, above.

It remains to determine endpoint behavior of the original series. When x = 3, the original
series becomes

∞∑
n=1

n+ 1

3n+1
3n =

1

3

∞∑
n=1

(n+ 1). (41)

The terms of this series become infinite, so it diverges.

When x = −3 the series becomes
∞∑
n=1

n+ 1

3n+1
3n =

1

3

∞∑
n=1

(−1)n(n+ 1), (42)

and this series diverges for the same reason. The solution to Part a is that the interval of
convergence for this series is (−3, 3).
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