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1 Problem 1

1.1 Part a

See Figure 1.
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Figure 1: Problem 1, Part a
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1.2 Part b

The range of x(t) = sin 3t is (−1 ≤ x ≤ 1. The range of y(t) = 2t is −2π ≤ y ≤ 2π.

1.3 Part c

x(t) = sin 3t reaches its positive maximum of 1 at t = −π/2, at t = π/6, and at t = 5π/6 in
the interval −π ≤ t ≤ π. Thus, the smallest positive value of t for which x(t) is maximal
is t = π/6.

Speed at time t, σ(t), is the length of the velocity vector at that time:

σ(t) =

√
[x′(t)]2 + [y′(t)]2 =

√
9 cos2 3t+ 4. (1)

Thus,

σ
(π
6

)
=

√
9 cos2

π

2
+ 4 = 2. (2)

1.4 Part d

We obtain distance traveled during the time interval a ≤ t ≤ b by integrating speed over
[a, b]. Speed, found above, is given by σ(t) =

√
4 + 9 cos2 3t. Thus, the distance traveled

over [−π, π] is, by numerical integration,∫ π

−π

√
4 + 9 cos2 3t dt ∼ 17.97343. (3)

But 5π ∼ 15.71, so the distance the particle travels when −π ≤ t ≤ π is more than
5π.

2 Problem 2

2.1 Part a

If P ′(t) = 1 − 3e−0.2
√
t, then P ′ is continuous on its domain, and P ′(9) ∼ −0.64643 < 0.

This means that P (t), the amount of pollutant in the lake at time t, is decreasing in the
vicinity of t = 0.
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Note: We phrase our answer this way because the phrase “increasing at a point” is almost
never defined in elementary calculus texts. It is possible, in fact, for a function to have
a derivative that is positive at a point but for the function to be increasing in no open
interval centered at that point. This can’t happen, however, if the derivative is continuous
at the point in question.

2.2 Part b

The exponential e−0.2
√
t is decreasing on the interval [0,∞), so P ′ is an increasing function

on that interval. Moreover, P ′(0) = −2, while limt→∞ P
′(t) = 1. It follows that P ′ has ex-

actly one zero, and that P has exactly one critical point in the interval—where, moreover,
P ′ changes sign from negative to positive. Consequently, P has an absolute minimum
at this critical point. We find the critical point by solving 1 − 3e−0.2

√
t0 = 0 to obtain

t0 = 25(ln 3)2 ∼ 30.17372.

The amount of pollutant in the lake is at a minimum when t = t0 ∼ 30.17372 days.

2.3 Part c

By the Fundamental Theorem of Calculus, the amount P (t) of pollutant in the lake at time
t is given by

P (t) = P (0) +

∫ t

0
P ′(τ) dτ (4)

= 50 +

∫ t

0

[
1− 3e−0.2

√
τ
]
dτ. (5)

Integrating numerically, we find that

P (t0) = 50 +

∫ 25(ln 3)2

0

[
1− 3e−0.2

√
τ
]
dτ (6)

∼ 35.10434 gallons. (7)

If the lake is considered safe when P (t) ≤ 40, the lake is safe when the amount of pollutant
reaches its minimum value of about 35.10424.
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2.4 Part d

The linearization L at t = 0 has equation

L(t) = 50 + P ′(0)t (8)
= 50− 2t. (9)

Thus, the linearization predicts the arrival of safety when 50 − 2t = 40, or when t =
5.

Note: Newton’s Method, together with repeated numerical integration, gives the arrival
of safety at t ∼ 10.16000. The lake then remains safe until t ∼ 56.47974, after which an
unsafe condition will prevail.

3 Problem 3

3.1 Part a

Solving numerically, we find that
3

4
x = 4x − x3 + 1 and x > 0 when x ∼ 1.94045. Thus,

the intersection of the two curves is at x = b, where b ∼ 1.94945. AR, he area of the region
R, is thus given by

AR =

∫ b

0

[
(4x− x3 + 1)− 3

4
x

]
dx =

∫ b

0

[
1 +

13

4
x− x3

]
dx ∼ 4.51468. (10)

The integral is elementary, but we know the upper limit of the integral only approxi-
mately, so we integrated numerically.

3.2 Part b

The volume V of the solid generated by revolving the region R about the x-axis is, by the
method of washers,

V = π

∫ b

0

[
(4x− x3 + 1)2 −

(
3

4
x

)2
]
dx ∼ 57.46237. (11)

This integral, too, is elementary, but as in Part a, we have carried out the integration
numerically.
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3.3 Part c

The perimeter, PR, of the region R is

PR = 1 +

∫ b

0

√
1 +

(
3

4

)2

dx+

∫ b

0

√
1 + (4− 3x2)2dx (12)

= 1 +
5

4
b+

∫ b

0

√
9x4 − 24x2 + 17 dx. (13)

Note: The integral is not elementary. Evaluation is not required, but numerical integration
gives

PR ∼ 9.60048. (14)

4 Problem 4

4.1 Part a

If

g(x) = 5 +

∫ x

6
f(t) dt, (15)

then g(6) = 5, because
∫ 6
6 g(t) dt = 0. By the Fundamental Theorem of Calculus, g′(x) =

f(x), so, according to the graph given in the statement of the problem, g′(6) = 3.

Also, g′′(x) = f ′(x), and because it is given that the line tangent to the curve y = f(x) at
x = 6 is horizontal, we know that f ′(6) = 0. Hence, g′′(6) = 0.

4.2 Part b

We know that g′(x) = f(x), and we also know that g is decreasing on any interval where g′

is negative. Moreover, if a continuous function is decreasing on an open interval it is also
decreasing on the closure of that interval. From the graph given, we see that f(x) < 0 on
[−3, 0) and on (12, 15]. We conclude that g is decreasing on [−3, 0] and that g is decreasing
on [12, 15].

Notes:

• In recent history, the readers have not cared about the endpoints of intervals of
monotonicity.
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• We must not conclude that g is decreasing on [−3, 0]∪ [12, 15]. In fact, values of g(u)
will be negative when u ∈ [−3, 0], and consequently smaller than any of the positive
values that g(v) assumes for each v ∈ [12, 15].

4.3 Part c

A function is concave downward on any open interval where its derivative is decreasing.
But g′(x) = f(x) is decreasing on [6, 15], and nowhere else. So g is concave downward
on (6, 15). Whether to include the endpoints of this interval is highly dependent upon
the definition one chooses for the term “concave downward”. Several distinct definitions
appear in different textbooks, so the choice should not affect scoring.

4.4 Part d

The required trapezoidal approximation is∫ 15

3
f(t) dt ∼ 3

2

[
f(−3) + 2f(0) + 2f(3) + 2f(6) + 2f(9) + 2f(12) + f(15)

]
(16)

∼ 3

2

[
(−1) + 0 + 2 + 6 + 2 + 0 + (−1)

]
= 12. (17)

5 Problem 5

5.1 Part a

If the line y = −2 is tangent to the solution curve y = f(x) to the differential equa-
tion

y′ =
3− x
y

, (18)

then at the point of tangency we must have y′ = 0, whence 3 − x = 0, which means
that x = 3. Because the y-coordinate of the point of tangency is y = −2 and solutions
of differential equations are continuous on their domains, there is then an open interval I
centered at x = 3 and throughout which f(x) < 0. We may assume that I does not contain
zero. If x ∈ I and x < 3, then y′ = (3 − x)/y < 0 because 3 − x > 0 and y < 0. If, on
the other hand, x ∈ I and x > 3, then y′ = (3 − x)/y > 0 because 3 − x < 0 and y < 0.
Consequently, x = 3 gives a critical point for f , and f ′(x) < 0 for x immediately to the left
of x = 3 but f ′(x) > 0 for x immediately to the right of x = 3. It follows from the First
Derivative Test that f has a local minimum at x = 3.
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5.2 Part b

If y = g(x) is a solution to y′ = (3− x)/y for which g(6) = −4, then

g′(x) =
3− x
g(x)

, so (19)

g(x)g′(x) = 3− x. (20)

Integrating both sides of this latter equation from 6 to x, we have∫ x

6
g(ξ)g′(ξ) dξ =

∫ x

6
(3− ξ) dξ; (21)

�
��
1

2

[
g(ξ)

]2∣∣∣∣x
6

= −
�
��
1

2
(3− ξ)2

∣∣∣∣x
6

; (22)[
g(x)

]2 − [− 4
]2

= −(3− x)2 + 9; (23)[
g(x)

]2
= 16 + 6x− x2. (24)

Now g(6) = −4, and, again by continuity, g(x) must have constant sign throughout some
neighborhood of x = 6. Consequently, we choose the negative square root, and we write
the solution:

g(x) = −
√

16 + 6x− x2. (25)

Note: We can solve this differential equation, but with the initial condition f(3) = −2, in
the same way, leading to f(x) = −

√
−(x2 − 6x+ 5). This gives

f ′(x) =
x− 3√

−x2 + 6x− 5
. (26)

Then we can solve Part a of this problem by applying either the First Derivative Test or
the Second Derivative Test at the critical point x = 3. The First Derivative Test is more
efficient.

6 Problem 6

6.1 Part a

We are given that, for −1 ≤ u < 1,

∞∑
k=1

uk

k
= ln

1

1− u
. (27)
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Thus,

ln
1

1 + 3x
= ln

1

1− (−3x)
=

∞∑
k−1

(−3x)k

k
(28)

when −1 ≤ −3x < 1, or, equivalently, when −1

3
< x ≤ 1

3
. Thus, the interval of conver-

gence for the series of equation (28) is −1

3
< x ≤ 1

3
.

6.2 Part b

By (27),

∞∑
n=1

(−1)n

n
= ln

1

1− (−1)
= ln

1

2
= − ln 2. (29)

6.3 Part c

We know that the series
∞∑
k=1

1

kq
converges if q > 1, but diverges if q ≤ 1. Consequently,

for
∞∑
k=1

1

k2p
to diverge, we need 2p ≤ 1. On the other hand,

∞∑
k=1

(−1)k

kp
will be a convergent

alternating series if the magnitudes of the terms decrease to zero—which will be so if

p > 0. Thus, p =
1

2
will meet the requirements of the problem—as will any p such that

0 < p ≤ 1

2
.

6.4 Part d

Reasoning as in Part c, above, we need to have p ≤ 1 so that
∞∑
k−1

1

kp
diverges, but we want

2p > 1 so that
∞∑
k−1

1

k2p
converges. We may therefore take p to be 1—or, in fact, any value

1

2
< p ≤ 1.
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