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1 Problem 1

1.1 Part a

See Figure 1 for a plot of the region given in this problem.
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Figure 1: The region of Problem 1, Part a
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The area of this region is∫ 1

1/2
(ex − lnx) dx = (ex + x− x lnx)

∣∣∣∣1
1/2

(1)

= (e+ 1− 1 · 0)−
(
e1/2 +

1

2
− 1

2
ln

1

2

)
(2)

= e− e1/2 + 1

2
− ln

√
2 ∼ 1.22299. (3)

1.2 Part b

We find, using the method of washers, that the required volume is

π

∫ 1

1/2

[
(4− lnx)2 − (4− ex)2

]
dx ∼ 23.60949. (4)

The integral is elementary, but tedious—and it requires repeated integrations by parts.
We have saved time by carrying out the integration numerically.

1.3 Part c

First, we seek the critical points of h(x) = ex−lnx in (1/2, 2) together with the singularities
of h′ in the same interval. Now h′(x) = ex − x−1, which is defined for all x ∈ (0, 1).
Numeric solution of the equation ex − x−1 = 0 gives one critical point in (1/2, 1) at x =
x1 ∼ 0.56714.

We know that the absolute extrema of h(x) in [1/2, 1] occur at one of the points x = 1/2,
x = x1, or x = 1. We have

h(1/2) ∼ 2.34187; (5)
h(x1) ∼ 2.33037; (6)
h(1) = e ∼ 2.71828. (7)

(8)

The absolute minimum value of h(x) on [1/2, 1] is h(x1) ∼ 2.33037, and the absolute
maximum value of h(x) on [1/2, 1] is h(1) = e.
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2 Problem 2

2.1 Part a

The number of people who have entered the park by the time t = 17 is∫ 17

9

15600 dt

t2 − 24t+ 160
∼ 6004.27032. (9)

To the nearest whole number, this is 6004.

Note: The integral is elementary:∫
dt

t2 − 24t+ 160
=

∫
dt

(t− 12)2 + 16
(10)

=
1

4
arctan

t− 12

4

∣∣∣∣17
9

(11)

(12)

2.2 Part b

Revenue is given by

15

∫ 17

9

15600 dt

t2 − 24t+ 160
+ 11

∫ 23

17

15600 dt

t2 − 24t+ 160
∼ 104048.16523 (13)

To the nearest dollar, this is $104, 048.

2.3 Part c

By the Fundamental Theorem of Calculus,

H ′(t) =
15600

t2 − 24t+ 160
− 9890

t2 − 38t+ 370
, so that (14)

H ′(17) = −202690

533
∼ 380.28143 (15)

H(t) gives the number of people in the partk at time t, where 9 ≤ t ≤ 23. Thus, H(17) ∼
3725 gives the number of people in the park at 5:00 pm. H ′(T ) gives the rate at which the
number of people in the park is increasing at time t, again for 9 ≤ t ≤ 23. H ′(17) ∼ −380
means that at 5:00 pm the number of people in the partk is decreasing at the rate of 380
people per hour.
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2.4 Part d

As we have seen in Part c, above,

H ′(t) =
15600

t2 − 24t+ 160
− 9890

t2 − 38t+ 370
. (16)

See Figure 2 for a plot of H ′(t).
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Figure 2: Problem 2, Part d: Plot of H ′(t)

We see from the plot that there is a value t0 near t = 16 for whichH ′(t0) = 0, thatH ′(t) > 0
for t < t0, and that H ′(t) < 0 for t > t0. So H(t0) must be the absolute maximum for
H(t), because H(t) is increasing on [9, t0] and decreasing on [t0, 23]. Setting H(t) = 0 and
solving numerically gives t0 ∼ 15.79481.

We conclude that the model predicts the maximal number of people in the park just before
4:00 pm—when t ∼ 15.79481, which is about 3:48 pm.

3 Problem 3

3.1 Part a

The slope m of a curve given parametrically by x = x(t), y = y(t) at the point correspond-
ing to t = t0 is

m(t0) =
y′(t0)

x′(t0)
. (17)
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Thus,

m(2) =
y′(2)

x′(2)
(18)

=
18 sin 2 + cos 2− 1

10 + 4 cos 2
∼ 1.79370. (19)

3.2 Part b

Acceleration, a(t), at time t along the curve r(t) = 〈x(t), y(t)〉 is given by a(t) = 〈x′′(t), y′′(t)〉.
When x(T ) = 140, we have (solving numerically) T ∼ 13.64708. Then

a(T ) = 〈−4 sinT,− sinT + (20− T ) cosT − sinT 〉 (20)
∼ 〈−3.52917, 1.22573〉. (21)

3.3 Part c

From the graph supplied with the statement of the problem, it is evident that the maximal
value of y occurs at the first non-zero critical point for y(t). But

y′(t) = −(1− cos t) + (20− t) sin t. (22)

Equating this latter to 0 and solving numerically, we find that the desired critical point
lies at t = t0 ∼ 3.02393. The speed at this instant, σ(t0), is given by

σ(t0) =
√
[x′(t0)]2 + [y′(t0)]2 (23)

= x′(t0) = 10 + 4 cos[t0) ∼ 6.02766. (24)

3.4 Part d

y(t) = (20 − t)(1 − cos t), so y(t) vanishes in (0, 18) only where cos t = 1. This happens
only at t1 = 2π and at t2 = 4π. The average speed, σ, over the interval t1 ≤ t ≤ t2 is

σ =
1

t2 − t1

∫ 4π

2π

√
[x′(τ)]2 + [y′(τ)]2 dτ (25)

=
1

2π

∫ 4π

2π

√
(10 + 4 cos τ)2 + [(20− τ) sin τ + cos τ − 1]2 dτ (26)

Evaluation is not required. However, numerical integration gives

σ ∼ 12.50440 (27)
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4 Problem 4

4.1 Part a

The function g is given by

g(x) =

∫ x

0
F (t) dt (28)

Thus, g(−1) is the negative of the area of a triangle of base 1 and height 3, or
3

2
.

The value g′(−1) is, by the Fundamental Theorem of Calculus, f(−1) = 0.

The value g′′(−1) is, by the Fundamental Theorem of Calculus again, f ′(−1). But in the
vicinity of x = −1, the graph of the function f is a straight line of slope 3, so g′′(−1) =
f ′(−1) = 3.

4.2 Part b

The function g is increasing on the closures of intervals where g′(x) = f(x) > 0. Thus g is
increasing on [−1, 1].

Note: It can be shown that a function which is continuous on an interval [a, b] and in-
creasing on (a, b) must also be increasing on [a, b], so even though g′(−1) = 0 = g′(1), the
function g is nevertheless increasing on [−1, 1]. In the past, the readers have nevertheless
accepted (−1, 1) for the answer to a question such as this one.

4.3 Part c

As we have indicated above, g′′(x) = f ′(x). We know that

f ′(x) =


3 for − 2 < x < 0

−3 for 0 < x < 2

(29)

Thus g is concave downward on the interval (0, 2), where g′′(x) = f ′(x) < 0.

Note: Calculus textbooks vary in which of several inequivalent definitions of concavity
they give. The question of whether to include endpoints of these intervals depends on
which of these definitions we choose—and upon a careful reading of the definition we
pick.
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4.4 Part d

A pair of integrations shows that

g(x) =


3x+

3

2
x2 for −2 ≤ x ≤ 0

3x− 3

2
x2 for 0 < x ≤ 2.

(30)

See Figure 3 for the required graph. (We could have solved Parts a–c using this alternate
description of g.)
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Figure 3: Graph for Problem 4, part d

5 Problem 5

5.1 Part a

See Figure 4.

7



-2 -1 1 2

-3

-2

-1

1

2

3

Figure 4: Problem 5, Part a

5.2 Part b

If f(0) = 1, then f ′(0) = 2 · 1− 4 · 0 = 2, so

f(0.1) ∼ f(0) + f ′(0) · (0.1) = 1 + 2 · (0.1) = 1.2 (31)

But then

f ′(0.1) ∼ 2 · f(0.1)− 4 · (0.1) ∼ 2 · (1.2)− 4 · (0.1) = 2, (32)

so that

f(0.2) ∼ f(0.1) + f ′(0.1) · (0.1) ∼ 1.2 + 2 · (0.1) = 1.4. (33)
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5.3 Part c

If f(x) = 2x+ b is to be a solution of y′ = 2y − 4x, we must have

2 =
d

dx
(2x+ b) (34)

= f ′(x) (35)
= 2f(x)− 4x (36)
= 2(2x+ b)− 4x (37)
= 2b, (38)

and we see that b = 1.

5.4 Part d

If g is a function that satisfies the equation y′ = 2y − 4x with initial condition g(0) = 0,
then g′(0) = 2 · 0− 4 · 0 = 0. Thus, g has a critical point at x = 0. But

g′′(x) =
d

dx

[
g′(x)

]
(39)

=
d

dx

[
2g(x)− 4x

]
(40)

= 2g′(x)− 4, so that (41)
g′′(0) = 2g′(0)− 4 = −4 < 0. (42)

By the Second Derivative Test, g has a local minimum at the point (0, 0).

Note: If y = ϕ(x) is a solution of y′ = 2y − 4x , then

ϕ′(x)− 2ϕ(x) = −4x; (43)

e−2xϕ′(x)− 2e−2xϕ(x) = −4xe−2x; (44)
d

dx

[
e−2xϕ(x)

]
= −4xe−2x. (45)

It follows that ∫ x

0

d

dξ

[
e−2ξϕ(ξ)

]
dξ = −4

∫ x

0
ξe−2ξ dξ, (46)

or [
e−2ξϕ(ξ)

] ∣∣∣∣x
0

= e−2ξ(2ξ + 1)

∣∣∣∣x
0

(47)
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and

e−2xϕ(x)− ϕ(0) = e−2x(2x+ 1)− 1. (48)

If it is also required that ϕ(0) = a for some constant a, then ϕ(x) = (a−1)e2x+2x+1.

6 Problem 6

6.1 Parts a & b

If

f(x) =

∞∑
n=0

(2x)n+1

n+ 1
(49)

then term by term differentiation gives

f ′(x) = 2
∞∑
n=0

(2x)n (50)

= 2 + 4x+ 8x3 + 16x2 + · · ·+ 2n+1xn + · · · . (51)

(This is Part b.)

Both series have the same radius of convergence. But the latter series is a geometric series

with common ratio 2x, so it converges where |2x| < 1, or throughout the interval −1

2
<

x <
1

2
, and the radius of convergence for both series is

1

2
.

It remains, then, to decide what happens to the original series when x = ±1

2
.

When x =
1

2
, the series becomes

∞∑
n=1

1

n+ 1
. (52)

This is the harmonic series, which diverges.

When x = −1

2
, the series becomes

∞∑
n=1

(−1)n+1

n+ 1
. (53)
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This is the alternating harmonic series, which converges.

We conclude that the interval of convergence is
[
−1

2
,
1

2

)
.

6.2 Part c

We have seen above that

f ′(x) = 2

∞∑
n=0

(2x)n (54)

is a geometric series with common ratio 2x. Consequently, on
(
−1

2
,
1

2

)
,

f ′(x) =
2

1− 2x
, so that (55)

f ′
(
−1

3

)
=

2

1− 2 ·
(
−1

3

) =
6

5
. (56)
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