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1 Problem 1

1.1 Part a

If f(x) = 4x2 − x3 and g(x) = 18 − 3x, then the curves have an intersection in the first
quadrant where x = 3. Setting f(x) = g(x) we find that x3−4x2−3x+18 = 0. We note that
x = 3 is a solution of this equation, and that f(3) = g(3) = 9. Moreover, f ′(x) = 8x− 3x2,
and thus, f ′(3) = −3, which is precisely the slope of the line y = 18 − 3x = g(x). It
follows that the line y = 18 − 3x is the tangent line to the graph of y = f(x) at the point
x = 3.

1.2 Part b

The solutions of the equation f(x) = 0 are x = 0 and x = 4. The solution of the equation
18− 3x = 0 is x = 6

The region R extends horizontally from x = 3 on the left to x = 6 on the right, so the area,
AR of R is given by

AR =

∫ 4

3

[
(18− 3x)−

(
4x2 − x3

)]
dx+

∫ 6

4
(18− 3x) dx (1)
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Now∫ 4

3

[
(18− 3x)−

(
4x2 − x3

)]
dx =

[
18x− 3

2
x2 − 4

3
x3 +

1

4
x4
] ∣∣∣∣4

3

(2)

=

(
72− 24− 256

3
+ 64

)
−
(
54− 27

2
− 36 +

81

4

)
(3)

=
80

3
− 99

4
=

23

12
∼ 1.91667, (4)

while ∫ 6

4
(18− 3x) dx =

(
18x− 3

2
x2
) ∣∣∣∣6

4

(5)

= (108− 54)− (72− 24) = 54− 48 = 6. (6)

Thus

AR =
23

12
+ 6 =

95

12
∼ 7.91667. (7)

1.3 Part c

The curve y = 4x2 − x3 intersects the x-axis, as we have seen in Part a, above, at x = 0
and at x = 4. thus, the volume generated when the region R is revolved about the x-axis
is

π

∫ 4

0

(
4x2 − x3

)2
dx = π

∫ 4

0

(
16x4 − 8x5 + x6

)
dx (8)

= π

(
16

5
x5 − 4

3
x6 +

1

7
x7
) ∣∣∣∣4

0

=
16384

105
π ∼ 490.20813. (9)

Remark: This is a calculator-active problem, and we can save time by doing the integra-
tions of Parts b and c numerically.

2 Problem 2

2.1 Part a

The circle of radius
√
2 has equation y =

√
2− x2 in the first quadrant and extends over

the interval 0 ≤ x ≤
√
2 there. The first-quadrant portion of the circle of radius 1 has
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equation y =
√

1− (x− 1)2 and extends over the interval 0 ≤ x ≤ 2 there. Using the fact
that the two semi-circles intersect at x = 1, the area, AR, of the region R is therefore given
by

AR =

∫ 1

0

√
1− (x− 1)2 dx+

∫ √2
1

√
2− x2 dx. (10)

2.2 Part b

The circle of radius
√
2 has equation x =

√
2− y2 in the first quadrant and extends over

the interval 0 ≤ y ≤
√
2 there. The first-quadrant portion of the circle of radius 1 that

lies inside the larger circle has equation x = 1 −
√

1− y2 and extends over the interval
0 ≤ y ≤ 1. Thus,

AR =

∫ 1

0

[√
2− y2 − 1 +

√
1− y2

]
dy. (11)

2.3 Part c

The segment that connects the origin to the first-quadrant intersection point of the two
circles, which is (1, 1) in cartesian coordinates, lies in the ray θ = π/4. The area of the
sector of the large circle that lies below this segment but above the positive x-axis is a part
of R and has area

1

2

∫ π/4

0
r2 dθ =

∫ π/4

0
dθ. (12)

What remains of R after this sector is removed has bounding curve r = 2 cos θ, where
π

4
≤ θ ≤ π

2
. The area of this region is therefore

1

2

∫ π/2

π/4
r2 dθ = 2

∫ π/2

π/4
cos2 θ dθ. (13)

It now follows that the area AR, being the sum of these two areas is given by

AR =

∫ π/4

0
dθ + 2

∫ π/2

π/4
cos2 θ dθ (14)
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Note: Evaluation is not required for any of these integrals. But, of the expressions on the
right-hand sides of equations (10), (11), and (14), the last one is most easily evaluated. we
have ∫ π/4

0
dθ + 2

∫ π/2

π/4
cos2 θ dθ =

∫ π/4

0
dθ +

∫ π/2

π/4
(1 + cos 2θ) dθ (15)

= θ

∣∣∣∣π/4
0

+

(
θ +

1

2
sin 2θ

) ∣∣∣∣π/2
π/4

=
1

2
(π − 1). (16)

3 Problem 3

3.1 Part a

Average radius is
1

720

∫ 360

0
B(x) dx.

3.2 Part b

The required midpoint Riemann sum is

1

720

[
20 · (120− 0) + 30 · (240− 120) + 24 · (360− 240)

]
= 14 (17)

3.3 Part c

The integral π
∫ 275

125

[
B(x)

2

]2
dx gives the volume, in cubic centimeters, of the segment of

the blood vessel that extends from x = 125 mm to x = 275 mm.

3.4 Part d

The function B is given twice differentiable, so if 0 ≤ a < b ≤ 360, then B is continuous
on [a, b] and differentiable on (a, b). Also, B′ is continuous on [a, b] and differentiable on
(a, b). (We interpret continuity and differentiability at an endpoint of an interval in the
appropriate one-sided sense.) Consequently, Rolle’s Theorem can be applied to B on any
interval, 0 ≤ a < b ≤ 360 for which B(a) = B(b). Similarly for B′.
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We have B(60) = B(180). By Rolle’s Theorem, then, there is a number ξ1 ∈ (60, 180) for
which B′(ξ1) = 0. We also have B(240) = B(360), so—again by Rolle’s Theorem—there
is a number ξ2 ∈ (240, 360) such that B′(ξ2) = 0. It is clear that ξ1 < ξ2 because we know
that ξ1 < 180 < 240 < ξ2.

Now B′(ξ1) = 0 = B′(ξ2), and a third application of Rolle’s Theorem, this time to B′ on
the interval [ξ1, ξ2], yields a number η ∈ (ξ1, ξ2) such that B′′(η) = 0. Noting that 0 < ξ1 <
η < ξ2 < 360, we conclude that we have found η ∈ (0, 360) such that B′′(η) = 0

4 Problem 4

4.1 Part a

We are given x(t) = 2e3t + e−7t and y(t) = 3e3t − e−2t. The velocity vector, v(t), at time t
is

v(t) =
〈
x′(t), y′(t)

〉
(18)

=
〈
6e3t − 7e−7t, 9e3t + 2e−2t

〉
(19)

Thus

v(0) = 〈−1, 11〉 , (20)

and speed at time t = 0 is

|v(0)| =
√
(−1)2 + (112) =

√
122. (21)

4.2 Part b

dy

dx
=
y′(t)

x′(t)
(22)

=
9e3t + 2e−2t

6e3t − 7e−7t
(23)

=
9 + 2e−5t

6− 7e−10t
→ 3

2
as t→∞. (24)
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4.3 Part c

The tangent line is horizontal when dy
dx is zero. By Part b, above, this can happen only

when 9e3t + 2e−2t = 0. But both exponentials are always positive, so dy
dx never vanishes

and there are no horizontal tangent lines to this curve.

4.4 Part d

We have seen, in Part c, above, that the tangent vector to this curve never vanishes, be-
cause its second component never vanishes). But if the tangent vector never vanishes,
the tangent line is vertical precisely when the tangent vector is vertical, and this happens
when 6e3t − 7e−7t = 0. This is equivalent to t = − 1

10 ln
6
7 , so the tangent line to the curve

is horizontal at the point that corresponds to t =
1

10
ln

7

6
.

Note: The analysis becomes considerably more difficult if the velocity vector ever van-
ishes.

5 Problem 5

5.1 Part a

g(3) is the sum of the area of a rectangle of height 2, base 1, with the area of a triangle of
height 2, base 1, which is 2+1 = 3. By the Fundamental Theorem of Calculus, g′(x) = f(x),
so g′(3) = f(3) = 2. In the interval [2, 4], the Fundamental Theorem of Calculus tells us
that

g′(x) = f(x) = f(4) +
f(4)− f(2)

4− 2
(x− 4) (25)

= 0 +
0− 4

4− 2
(x− 4) = −2(x− 4) (26)

= 8− 2x, (27)

so

g′′(x) = −2 (28)

on [2, 4]. Hence, g′′(3) = −2.
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5.2 Part b

The average rate of change of g on [0, 3] is

g(3)− g(0)
3− 0

=
3− (−4)

3
=

7

3
. (29)

See Part a, above, for the calculation of g(3). To find g(0) we simply observe that

g(0) =

∫ 0

2
f(t) dt, (30)

which is the negative of the area of a triangle of base 2, height 4, which is −4.

5.3 Part c

By the Fundamental Theorem of Calculus, g′(x) = f(x). Thus, on the interval (0, 3), the
function g′(x) takes on its average value 7

3 just twice—where the horizontal line y = 7
3

intersects the graph of f .

One intersection lies in the interval [0, 2] where f(x) = 2x. Thus, this intersection is at
x = 7

6 . The other intersection lies in the interval [2, 4], where f(x) = 8 − 2x, as we have
seen in Part a, above. This intersection must therefore be at x = 17

6 .

We conclude that the only such points lie at x = 7
6 and at x = 17

6 .

5.4 Part d

Inflection points occur where the montonicity of the derivative changes from increasing to
decreasing, or vice versa. There are two such points for g′(x) = f(x) (which equality we
know from the Fundamental Theorem of Calculus). They are at x = 2 and at x = 5.

6 Problem 6

6.1 Part a

The Tayor series at x = 2 for f has general term ak(−2)k, where

ak =
f (k)(2)

k!
=

(k + 1)!

3k · k!
=
k + 1

3k
. (31)
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Thus, in the interval of convergence,

f(x) = 1 +
2

3
(x− 2) +

1

3
(x− 2)2 +

4

27
(x− 2)3 + . . .+

k + 1

3k
(x− 2)k + . . . . (32)

6.2 Part b

We have

lim
k→∞

(∣∣∣∣k + 2

3k+1
(x− 2)k+1

∣∣∣∣ / ∣∣∣∣k + 1

3k
(x− 2)k

∣∣∣∣) =
1

3
|x− 2| lim

k→∞

1 + 2
k

1 + 1
k

(33)

=
1

3
|x− 2|, (34)

This limit is less than one when |x−2| < 3, so, by the Ratio Test, the radius of convergence
for the series is 3.

6.3 Part c

By the Fundamental Theorem of Calculus, we have

g(x) = g(2) +

∫ x

2
f(ξ) dξ (35)

= 3 +

∫ x

2

[
1 +

2

3
(ξ − 2) +

1

3
(ξ − 2)2 +

4

27
(ξ − 2)3 + · · ·+ k + 1

3k
(x− 2)k + · · ·

]
dξ.

(36)

We may integrate the series term by term as long as |x − 2| < 3, and, doing so, we find
that

g(x) = 3 + (x− 2) +
1

3
(x− 2)2 +

1

32
(x− 2)3 + · · ·+ 1

3k−1
(x− 2)k + · · · . (37)

6.4 Part d

The radius of convergence of a power series obtain by integrating a power series is iden-
tical to that of the original series. If x = −2, then |x − 2| = | − 4| = 4 > 3, so x = −2
lies outside the interval of convergence for the original series—and therefore for the se-
ries for g. The Taylor series for g that we obtained in Part c, above, therefore diverges at
x = −2.
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Note: There are other approaches to Part d. We can observe that when x = −2, the k-th
term of the series in (37) becomes

1

3k−1
(x− 2)k = −4

(
−4

3

)k−1
, (38)

which doesn’t go to zero as k becomes infinite.

Still another possibility is to note that the series of (37) is a geometric series whose com-

mon ratio is
x− 2

3
, and that the magnitude of this ratio exceeds 1 when x = −2. The ob-

servation that this series is geometric gives us, not only an alternate way to determine the
radius of convergence for both series, but a way to sum the series when |x− 2| < 3:

g(x) = 3

∞∑
k=0

(
x− 2

3

)k
=

3

1− x−2
3

=
9

5− x
. (39)

From this, it is immediate that

f(x) = g′(x) =
9

(5− x)2
. (40)
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