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1 Problem1

1.1 Parta

If f(x) = 42? — 2% and g(v) = 18 — 3z, then the curves have an intersection in the first
quadrant where z = 3. Setting f(z) = g(x) we find that 23 —42? —3x+18 = 0. We note that
z = 3 is a solution of this equation, and that f(3) = ¢g(3) = 9. Moreover, f'(z) = 8z — 322,
and thus, f/(3) = —3, which is precisely the slope of the line y = 18 — 3z = g(z). It
follows that the line y = 18 — 3z is the tangent line to the graph of y = f(x) at the point
T = 3.

1.2 Partb

The solutions of the equation f(z) = 0 are x = 0 and =z = 4. The solution of the equation
18 —3x=0isx =6

The region R extends horizontally from 2 = 3 on the left to 2 = 6 on the right, so the area,
Apg of Ris given by

4 6
= — 3z) — (42? — 23 T —ox)ax
AR_/3 [(18 — 3z) — (4 )] d +/4 (18 — 3x)d (1)



Now

4

/4 [(18 —3x) — (41’2 - $3)] dr = |:18£L' — §$2 — %x?’ + 1$4:| (2)
3
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= <72—24—3+64) — (54—2—36+4) 3)
80 99 23
= — - —=—~1.91 4
3 1 1 91667, 4)
while
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2
/ (18 — 3z) dx = <1833— —x ) 5)
4 2 4
= (108 — 54) — (72 — 24) = 54 — 48 = 6. (6)
Thus
23 95
R 12+6 B 7.91667 (7)
1.3 Partc

The curve y = 42 — 23 intersects the z-axis, as we have seen in Part a, above, at x = 0
and at x = 4. thus, the volume generated when the region R is revolved about the z-axis
is

4 4
7r/ (4352—3:3)2 dx:ﬂ/ (162" — 82° + 2%) dx (8)
0 0
16 5 4, 1 \|" 16384
7r<5:1: 337—1-73:)0 105 " 90.20813 9)

Remark: This is a calculator-active problem, and we can save time by doing the integra-
tions of Parts b and ¢ numerically.

2 Problem 2

2.1 Parta

The circle of radius v/2 has equation y = v/2 — 22 in the first quadrant and extends over
the interval 0 < z < /2 there. The first-quadrant portion of the circle of radius 1 has

2



equation y = y/1 — (z — 1)? and extends over the interval 0 < z < 2 there. Using the fact
that the two semi-circles intersect at = = 1, the area, Ag, of the region R is therefore given

by

v
AR:/Ol\/l—(m—l)Qda:—i—/l 2\/2—x2da;. (10)

2.2 Partb

The circle of radius v/2 has equation x = /2 — y2 in the first quadrant and extends over
the interval 0 < y < /2 there. The first-quadrant portion of the circle of radius 1 that

lies inside the larger circle has equation # = 1 — /1 — y? and extends over the interval
0 <y < 1. Thus,

AR:/Ol {\/2—y2—1+\/1—y2} dy. 11)

2.3 Partc

The segment that connects the origin to the first-quadrant intersection point of the two
circles, which is (1, 1) in cartesian coordinates, lies in the ray # = 7/4. The area of the
sector of the large circle that lies below this segment but above the positive z-axis is a part

of R and has area
w/4 w/4
1 r?df = do. (12)
2
0 0

What remains of R after this sector is removed has bounding curve r = 2cos, where
T

1 <fh< g The area of this region is therefore

w/2 /2
;/ r2do = 2/ cos? 0 db. (13)
w/4 w/4

It now follows that the area Ag, being the sum of these two areas is given by

w/4 w/2
Ap = / df + 2 / cos? 6 df (14)
0 w/4



Note: Evaluation is not required for any of these integrals. But, of the expressions on the
right-hand sides of equations (10), (11), and (14), the last one is most easily evaluated. we

have
w/4 w/2 w/4 /2
/ d9+2/ cos29d6:/ d9+/ (1 + cos 20) df (15)
0 /4 0 w/4
w/4 1 w/2 1
=0 + <9+sin20) =—(m—1). (16)
0 2 w/4 2
3 Problem 3
3.1 Parta
360
Average radius is 720 J, B(z)dz.
3.2 Partb
The required midpoint Riemann sum is
1
=50 [20 - (120 — 0) + 30 - (240 — 120) + 24 - (360 — 240)] = 14 17)

3.3 Partc

275 2

The integral = / [;x)] dx gives the volume, in cubic centimeters, of the segment of
125

the blood vessel that extends from x = 125 mm to z = 275 mm.

3.4 Partd

The function B is given twice differentiable, so if 0 < a < b < 360, then B is continuous
on [a,b] and differentiable on (a, b). Also, B is continuous on [a, b] and differentiable on
(a,b). (We interpret continuity and differentiability at an endpoint of an interval in the
appropriate one-sided sense.) Consequently, Rolle’s Theorem can be applied to B on any
interval, 0 < a < b < 360 for which B(a) = B(b). Similarly for B'.



We have B(60) = B(180). By Rolle’s Theorem, then, there is a number &; € (60, 180) for
which B’(§;) = 0. We also have B(240) = B(360), so—again by Rolle’s Theorem—there
is a number &, € (240, 360) such that B'(§2) = 0. It is clear that §; < & because we know
that & < 180 < 240 < &.

Now B'(&1) = 0 = B'(&2), and a third application of Rolle’s Theorem, this time to B’ on
the interval [{;, &), yields a number n € (&1, &2) such that B”(n) = 0. Noting that 0 < & <
n < & < 360, we conclude that we have found 1 € (0, 360) such that B”(n) =0

4 Problem 4

4.1 Parta

We are given z(t) = 2¢3 + e~ and y(t) = 3e® — e~2!. The velocity vector, v(t), at time ¢
is

v(t) = (2'(t),y' (1)) (18)
= <663t —7e” " 9e3t 4 2672t> (19)
Thus
v(0) = (—1,11), (20)
and speed at time ¢t = 0 is
v(0)| = V(=1)2 + (11%) = V122. 1)
4.2 Partb
/
3t —2t
G @)
= é)j::__f; — B ast — oo. (24)



4.3 Partc

The tangent line is horizontal when % is zero. By Part b, above, this can happen only

when 93! + 2¢72* = 0. But both exponentials are always positive, so % never vanishes
and there are no horizontal tangent lines to this curve.

44 Partd

We have seen, in Part ¢, above, that the tangent vector to this curve never vanishes, be-
cause its second component never vanishes). But if the tangent vector never vanishes,
the tangent line is vertical precisely when the tangent vector is vertical, and this happens
when 6¢e3* — 7e~™ = 0. This is equivalent to ¢t = —1—10 In g, so the tangent line to the curve

is horizontal at the point that corresponds to ¢ = 10 In 6

Note: The analysis becomes considerably more difficult if the velocity vector ever van-
ishes.

5 Problem 5

5.1 Parta

g(3) is the sum of the area of a rectangle of height 2, base 1, with the area of a triangle of
height 2, base 1, which is 2+1 = 3. By the Fundamental Theorem of Calculus, ¢'(z) = f(z),
s0 ¢'(3) = f(3) = 2. In the interval [2, 4], the Fundamental Theorem of Calculus tells us
that

J(@) = ) = fa) + LD TPy 25)
:0+2:;1(x—4):—2(a:—4) (26)
=8 — 2, 27)

"
9" (x) = -2 (28)

on [2,4]. Hence, ¢"(3) = —2.



5.2 Partb

The average rate of change of g on [0, 3] is

1) =0 _3=(8) 7 9

3

See Part a, above, for the calculation of ¢(3). To find ¢(0) we simply observe that

— / g (30)
2

which is the negative of the area of a triangle of base 2, height 4, which is —4.

5.3 Partc

By the Fundamental Theorem of Calculus, ¢'(x) = f(x). Thus, on the interval (0, 3), the
function ¢'(z) takes on its average value 7 just twice—where the horizontal line y = %

intersects the graph of f.

One intersection lies in the interval [0, 2] where f(z) = 2z. Thus, this intersection is at

x = L. The other intersection lies in the interval [2,4], where f(z) = 8 — 2z, as we have

seen in Part a, above. This intersection must therefore be at z = %.

We conclude that the only such points lieatz = I and at z = &L

5.4 Partd

Inflection points occur where the montonicity of the derivative changes from increasing to
decreasing, or vice versa. There are two such points for ¢'(z) = f(x) (Which equality we
know from the Fundamental Theorem of Calculus). They are at x = 2 and at x = 5.

6 Problem 6

6.1 Parta

The Tayor series at = = 2 for f has general term aj(—2), where

@) (k+1)!  k+1

ko 3.kl 3k (31)

ap =



Thus, in the interval of convergence,

f(a:):1—|—%(m—2)+é(x—2)2+2i7(a:—2)3+ T(;z;—2)’“+.... (32)
6.2 Partb
We have
tim (|52 =2 /\’“;1@—2)% )- ;|x—2|k1ggoii (33)
=2l -2) (34)

This limit is less than one when |z —2| < 3, so, by the Ratio Test, the radius of convergence
for the series is 3.

6.3 Partc

By the Fundamental Theorem of Calculus, we have

o) = 9(2) + /2 ") de (35)

kE+1

(36)

:3+/; [1+2(5—2)+;(5—2)2+;7(§—2)3+---+

We may integrate the series term by term as long as |z — 2| < 3, and, doing so, we find
that
1 2, 1 3 k
g(a:):3+(a:—2)+§(m—2) +=@—=2)°4--+ x—2) . (37)

32 3k71 (

6.4 Partd

The radius of convergence of a power series obtain by integrating a power series is iden-
tical to that of the original series. If z = —2,then [z — 2| = | — 4| =4 > 3,s0x = —2
lies outside the interval of convergence for the original series—and therefore for the se-
ries for g. The Taylor series for g that we obtained in Part ¢, above, therefore diverges at
= -2



Note: There are other approaches to Part d. We can observe that when x = —2, the k-th
term of the series in (37) becomes

k—1
3,37_1(33 o) =4 (-i) , (38)

which doesn’t go to zero as k becomes infinite.

Still another possibility is to note that the series of (37) is a geometric series whose com-
x p—

mon ratio is , and that the magnitude of this ratio exceeds 1 when « = —2. The ob-

servation that this series is geometric gives us, not only an alternate way to determine the
radius of convergence for both series, but a way to sum the series when |z — 2| < 3:

2z —2\" 3 9
g(az):3k20< 3 > = 25 o (39)

3

From this, it is immediate that

, _ 9
fl@)=g(z)= G2 (40)



