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1 Problem 1

1.1 Part a

The two curves intersect when x = a, where
√
a = e−3a. Solving numerically, we find that

a ∼ 0.23873. Thus, we find (after a numerical integration) that the area of the region R
is ∫ 1

a

(√
x− e−3x

)
dx ∼ 0.44263. (1)

Note: The exact integral is∫ 1

a

(√
x− r−3x

)
dx =

1

3

[
2x3/2 + e−3x

] ∣∣∣∣1
a

(2)

=
1

3

(
2 + e−3

)
− 1

3

(
2a3/2 + e−3a

)
. (3)

However, we know a only approximately, so “exact” integration is misleading.

1.2 Part b

This problem is most easily solved using the method of washers. The required volume,
V , is

V = π

∫ 1

a

[(
1− e−3x

)2 − (1−√x)2] dx (4)

∼ 1.42356. (5)
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It is also possible—but probably not wise—to use the method of shells:

V = 2π

∫ √a
e−3

(1− y)
(
1 +

1

3
ln y

)
dy + 2π

∫ 1

√
a
(1− y)(1− y2) dy. (6)

Note: For the sake of completeness (See the Note to Part a, above), we record the “exact”
value:

V =
1

6
π
(
−8a3/2 + 3a2 + e−6a − 4e−3a + 4e−3 − e−6 + 5

)
. (7)

1.3 Part c

The area A(h) of the cross section meeting the x-axis at x = h is

A(h) = 5
(√

h− e−3h
)2

(8)

The required volume is therefore ∫ 1

a
A(x) dx ∼ 1.55435. (9)

The integral is not elementary, and we have carried out the integration numerically.

2 Problem 2

2.1 Part a

The quantity

x′(t) = −9 cos πt
6

sin
π
√
t+ 1

2
(10)

is negative on both of the intervals (0, 3) and (3, 8). (This is because πt/6 lies between 0
and π/2 when 0 < t < 3, but between π/2 and 3π/2 when 3 < t < 9, making the cosine
factor in x′(t) positive on (0, 3) but negative on (3, 9), while π

√
t+ 1/2 lies between π/2

and π when t is in (0, 3) but between π and
√
10π/2 < 2π when t is in (3, 9)—making

the sine factor positive on (0, 3) and negative on (3, 9).) Thus, x′(t) < 0 on (0, 3) and on
(3, 9), which means that x(t) is a decreasing function on [0, 9].. Furthermore, x′(3) = 0.
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We also know that the slope of the tangent line to the curve at a point (x(t0), y(t0)) is
y′(t0)/x

′(t0).

This shows that the pointB must have coordinates (x(3), y(3)), becauseB is the only point
on the curve where 0 < t < 9 and the slope of the tangent line is undefined. It follows that
the point C, corresponds to some value, t1 of t in (3, 9) where x′(t) is negative. Moreover,
the slope of the tangent line to the curve at C is positive. That slope being y′(t1)/x′(t1), we
conclude that if t1 is such that C is the point with coordinates (x(t1), y(t1)), then y′(t1) < 0
because, as we have seen above, x′(t1) < 0.

2.2 Part b

We have shown in Part a, above, that the particle is at point B when t = 3.

2.3 Part c

The slope of the tangent line to the curve at the point (x(8), y(8)), y =
5

9
x − 2, is

5

9
,

Hence,

y′(8)

x′(8)
=

5

9
, or (11)

y′(8) =
5

9
x′(8) (12)

=
5

9

[
−9 cos 4π

3
sin

3π

2

]
(13)

=
5

�9

[
−�9

2

]
(14)

= −5

2
, (15)

The velocity vector v(8) is thus

v(8) =
〈
x′(8), y′(8)

〉
(16)

=

〈
−9

2
,−5

2

〉
. (17)

Speed at time t = 8 is then

√
|v(8)| =

√
[x′(8)]2 + [y′(8)]2 =

√
81

4
+

25

4
=

√
53

2
∼ 5.14582. (18)
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2.4 Part d

Distance from A to D is

|x(9)− x(0)| =
∣∣∣∣∫ 9

0
x′(t) dt

∣∣∣∣ = 9

∣∣∣∣∫ 9

0
cos

πt

6
sin

π
√
t+ 1

2
dt

∣∣∣∣ ∼ 39.25537, (19)

where we have carried out the integration numerically.

3 Problem 3

3.1 Part a

At the point P we must have

5

3
y =

√
1 + y2, (20)

which implies that 25y2 = 9 + 9y2, or y2 = 9/16. Rejecting the extraneous negative
solution for y, we obtain y = 3/4. P lies on the curve C, where x =

√
1 + y2. Thus, at P

we have

x =
√
1 + y2 =

√
1 +

9

16
=

√
25

16
=

5

4
. (21)

The coordinates of the point P are thus
(
5

4
,
3

4

)
.

Because x =
√

1 + y2 on the curve C,

dx

dy

∣∣∣∣
P

=
y√

1 + y2

∣∣∣∣
P

=
3

5
. (22)

3.2 Part b

The area of the region S is∫ 3/4

0

(√
1 + y2 − 5

3
y

)
dy =

∫ 3/4

0

√
1 + y2 dy − 5

3

∫ 3/4

0
y dy (23)

∼ 0.81532− 0.46875 ∼ 0.34657, (24)
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by numerical integration.

Note: The integrations are elementary and can be carried out as follows:

The second integral on the right side of (23) is easy.

5

3

∫ 3/4

0
y dy =

5

6
y2
∣∣∣∣3/4
0

=
15

32
. (25)

To evaluate the first integral, we make the substitution y = sinhu. Then

dy = coshu du; (26)
y = 0⇒ u = 0; (27)

y =
3

4
⇒ u = sinh−1

3

4
. (28)

Therefore∫ 3/4

0

√
1 + y2 dy =

∫ sinh−1 3/4

0

√
1 + sinh2 u coshu du =

∫ sinh−1 3/4

0
cosh2 u du (29)

=
1

2

∫ sinh−1 3/4

0
(1 + cosh 2u) du =

1

2

[
u+

1

2
sinh 2u

] ∣∣∣∣sinh−1 3/4

0

(30)

=
1

2
[u+ sinhu coshu]

∣∣∣∣sinh−1 3/4

0

(because sinh 2α ≡ 2 sinhα coshα) (31)

=
1

2

[
sinh−1

3

4
+

3

4
cosh

(
sinh−1

3

4

)]
=

1

2

[
sinh−1

3

4
+

15

16

]
, (32)

where we have used the relation coshα ≡
√

1 + sinh2 α to make the last transforma-
tion.

This latter integral can also be obtained by making the substitution x = tan θ, but this
leads to the somewhat more difficult

∫
sec3 θ dθ.

3.3 Part c

The relations for the transformation from rectangular to polar coordinates are x = r cos θ
and y = r sin θ. We substitute these relations for x and y,

x2 − y2 = 1 becomes (33)

r2 cos2 θ − r2 sin2 θ = 1; (34)

r2(cos2 θ − sin2 θ) = 1; (35)

r2 =
1

cos2 θ − sin2 θ
. (36)
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3.4 Part d

The line 3x = 5y can be written as 3r cos θ = 5r sin θ, which is equivalent to tan θ = 3
5 or

θ = tan−1 3/5.

Using (36) now leads to the integral

1

2

∫ β

α
r2dθ =

1

2

∫ tan−1 3/5

0

dθ

cos2 θ − sin2 θ
(37)

Note: Evaluation of this integral is not required, but it easier than the one we evaluated
in Part b, above.

1

2

∫ tan−1 3/5

0

dθ

cos2 θ − sin2 θ
=

1

2

∫ tan−1 3/5

0

dθ

cos 2θ
=

1

2

∫ tan−1 3/5

0
sec 2θ dθ (38)

=
1

4
ln |sec 2θ + tan 2θ|

∣∣∣∣tan−1 3/5

0

(39)

=
1

4
ln
∣∣∣√1 + tan2 2θ + tan 2θ

∣∣∣ ∣∣∣∣tan−1 3/5

0

. (40)

But

tan 2θ =
2 tan θ

1− tan2 θ
, (41)

so

tan

(
2 tan−1

3

5

)
=

2 · (3/5)
1− (3/5)2

=
6

5
· 25
16

=
15

8
. (42)

Substituting this latter into (40) and simplifying, we find that

1

2

∫ tan−1 3/5

0

dθ

cos2 θ − sin2 θ
=

1

4
ln 4 = ln

√
2 ∼ 0.34657. (43)

It is reassuring to find that the two integrals give the same value.

4 Problem 4

4.1 Part a

The graph of y = f ′(x), as given, lies above the x-axis only on the interval [−3,−2), so f
is increasing precisely on the interval [−3,−2].
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Note: Positivity of the derivative on [−3,−2) guarantees that f is increasing on [−3,−2).
It is easily shown that a continuous function that is increasing on [a, b), or, in fact, on
(a, b), must be increasing on [a, b]. However, the readers have ignored this subtlety in the
past.

4.2 Part b

Inflection points can be found at places where the derivative changes from increasing to
decreasing, or vice versa. For the function f , we see from the graph of f ′ that one of these
things happens at x = 0 and at x = 2.

4.3 Part c

We have f ′(0) = −2, so the tangent line to y = f(x) at the point with coordinates (0, 3)
is

y = 3− 2x (44)

4.4 Part d

The Fundamental Theorem of Calculus assures us that

f(x) = 3 +

∫ x

0
f ′(ξ) dξ, (45)

so

f(−3) = 3 +

∫ −3
0

f ′(ξ) dξ (46)

Now
∫ 0
−3 f(ξ) dξ = −

∫ −3
0 f(ξ) dξ is the area of a triangle of base 1 and height 1 minus the

area of a triangle of base 2 and height 2, or 1
2 − 2 = −3

2 . So

f(−3) = 3 +
3

2
=

9

2
. (47)

On the other hand,

f(4) = 3 +

∫ 4

0
f(t) dt, (48)

and this integral is the negative of the area that remains when a semicircle of radius 2 is
removed from a rectangle of base 4 and height 2, or 8− 2π. Thus,

f(4) = 3− (8− 2π) = 2π − 5. (49)
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5 Problem 5

5.1 Part a

We have

V = πr2h = 25πh, (50)

so

dV

dt
= 25π

dh

dt
. (51)

But it is given that

dV

dt
= −5π

√
h. (52)

Therefore

25π
dh

dt
= −5π

√
h, (53)

and, dividing by 25π, we obtain

dh

dt
= −
√
h

5
. (54)

5.2 Part b

Let h = f(t) be the solution of the differential equation 5h′ = −
√
h for which h = 17 when

t = 0. Then f , being the solution of a differential equation with a positive initial value at
t = 0, is a continuous function, remains positive over some interval centered at t = 0. We
can therefore choose t so that f(τ) doesn’t vanish for any value of τ that lies in the closed
interval whose endpoints are 0 and t. For such values of τ we see that from

f ′(τ) = −
√
f(τ)

5
, (55)

it follows that ∫ t

0

f ′(τ)√
f(τ)

dτ = −1

5

∫ t

0
dτ. (56)
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Integrating, we obtain

2
√
f(t)

∣∣∣∣t
0

= −1

5
τ

∣∣∣∣t
0

, (57)

or

2
√
f(t)− 2

√
f(0) = − t

5
. (58)

But f(0) = 17, so √
f(t) =

√
17− t

10
, (59)

and we conclude that

f(t) =
1

100
t2 −

√
17

5
t+ 17. (60)

The solution we seek is thus h = f(t) = 1
100 t

2 −
√
17
5 t+ 17.

5.3 Part c

The coffee pot is empty when (
√
17− t/10)2 = 0, or when t = 10

√
17 seconds.

6 Problem 6

6.1 Part a

When

f(x) =
∞∑
k=0

akx
k, (61)

it follows that

ak =
f (k)(0)

k!
, k = 0, 1, 2, . . . . (62)

Thus,

f ′(0) = a1 = 0, and (63)

f ′′(0) = 2a2 = −
1

3
. (64)

Consequently, f has a critical point at x = 0, with f ′′(0) < 0. By the Second Derivative
Test, f has a local maximum at x = 0.
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6.2 Part b

We have

f(1) = 1− 1

3!
+

1

5!
− 1

7!
+ · · · . (65)

The denominators increase as we move to the right in the series, and the series is alternat-
ing. Hence, by the Alternating Series Test, the error in approximating f(1) by 1− 1/(3!) is
no larger that 1/(5!) = 1/120 < 1/100.

6.3 Part c

We have

xf(x) = x

(
1− x2

3!
+
x4

5!
− x6

7!
+ · · ·+ (−1)kx2k

(2k + 1)!
+ · · ·

)
(66)

= x− x3

3!
+
x5

5!
− x7

7!
+ · · ·+ (−1)kx2k+1

(2k + 1)!
+ · · · (67)

= sinx, (68)

and it follows that

f(x) =
sinx

x
(69)

extended through the origin by continuity. Substituting (69) for y in the expression xy′+y
then gives

xy′ + y = x

(
x cosx− sinx

x2

)
+

sinx

x
(70)

= x

(
cosx

x
− sinx

x2

)
+

sinx

x
(71)

= cosx− sinx

x
+

sinx

x
= cosx. (72)
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