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1 Problem 1

1.1 Part a

If a particle’s position at time t is given by r(t) = 〈x(t), y(t)〉, and its velocity v(t) is given
by

v(t) = r′(t) =
d

dt
〈x(t), y(t)〉 =

〈√
t4 + 9, 2et + 5e−t

〉
, (1)

then its speed σ(t) at time t is given by

σ(t) = |v(t)| =
√
v(t) · v(t) =

√
(t4 + 9) + (2et + 5e−t)2, so (2)

σ(0) =
√
58 ∼ 7.61577. (3)

Its acceleration a(t) at time t is

a(t) = v′(t) (4)

=
d

dt

〈√
t4 + 9, 2et + 5e−t

〉
(5)

=

〈
2t√
t4 + 9

, 2et − 5e−t
〉
, and (6)

a(0) = 〈0,−3〉 . (7)
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1.2 Part b

The tangent vector T(t) is

T(t) = v(t), so that (8)
T(0) = 〈3, 7〉. (9)

The slope of a line parallel to the tangent vector is
7

3
, so an equation for the line tangent

to the curve at r(0) = 〈4, 1〉 is

y = 1 +
7

3
(x− 4). (10)

The equation can also be written in vector notation:

r(t) = 〈4, 1〉+ t〈3, 7〉 = 〈4 + 3t, 1 + 7t〉. (11)

Alternately, we can put R = 〈x, y, 0〉 and write(
R− 〈4, 1, 0〉

)
×〈3, 7, 0〉 = 0, (12)

where “×” denotes the vector cross-product and 0 = 〈0, 0, 0〉.

1.3 Part c

Total distance traveled over the interval [0, 3] is the integral of speed over that inter-
val: ∫ 3

0
σ(τ) dτ =

∫ 3

0

√
(τ4 + 9) + (2eτ + 5e−τ )2 dτ ∼ 45.22682, (13)

where we have carried out the integration numerically.

1.4 Part d

The x-coordinate of the particle at time t = 3 is

x(t) = x(0) +

∫ 3

0
x′(τ) dτ (14)

= 4 +

∫ 3

0

√
τ4 + 9 dτ ∼ 17.93079 (15)
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2 Problem 2

2.1 Part a

If Tn(x) =
n∑
k=0

ak(x− a)k is a Taylor polynomial for the function f , then

ak =
f (k)(a)

k!
, for k = 1, . . . , n. (16)

From what is given here, we deduce that f(2) = 7 and f ′′(2) = −18.

2.2 Part b

Reasoning as in Part a, above, we find that f ′(2) = 0, so f has a critical point at x = 3.
Because f ′′(2) = −18, the Second Derivative Test allows us to conclude that f has a local
maximum at x = 2.

2.3 Part c

f(0) ∼ 7− 9 · (−2)2 − 3 · (−2)3 = −5. (17)

There is not enough information to determine whether f has a critical point at x = 0. This
is because the third degree Taylor Polynomial carries no information about derivatives at
any point other than the point about which the expansion has been done; it is determined
solely by the values of the function and its first three derivatives at that point.

2.4 Part d

The Lagrange Remainder, R3, for the third degree Taylor polynomial of t at x = 2 has the
form

R3 =
f (4)(ξ)

4!
(x− 2)4, (18)

where ξ is some unknown number in the interval whose endpoints are x and 2. Thus,

f(0) = T3(0) +
1

24
f (4)(ξ)(0− 2)4 (19)
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for a certain ξ ∈ [0, 2]. But |f (4)(x)| ≤ 6 for all x ∈ [0, 2], so

|f(0)− T (0)| ≤ 6

24
· 16 = 4. (20)

We have seen in part c, above, that T3(0) = −5. Hence

−4 ≤ f(0)− (−5) ≤ 4, (21)

whence

−9 ≤ f(0) ≤ −1, (22)

so that f(0) must be negative.

3 Problem 3

3.1 Part a

The Midpoint Rule with four subintervals of equal length gives∫ 40

0
v(t) dt ∼ v(5) · (10− 0) + v(15) · (20− 10) + v(25) · (30− 20) + v(35) · (40− 30)

(23)

∼ (9.2 + 7.0 + 2.4 + 4.3) · 10 = 229 (24)

The integral gives miles the plane traveled during the time interval 0 ≤ t ≤ 40.

3.2 Part b

By Rolle’s Theorem, acceleration—which is v′(t)—must be zero at least once in the interval
0 ≤ t ≤ 15 because v(0) = v(15). Similarly, v′(t) must be zero at least once in the interval
25 ≤ t ≤ 30, because v(25) = v(30). Thus, acceleration must vanish at least twice in the
interval 0 ≤ t ≤ 40.

3.3 Part c

If the plane’s velocity is given by

f(t) = 6 + cos
t

10
+ 3 sin

7t

40
, (25)
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then

f ′(t) =
21

40
cos

7t

40
− 1

10
sin

t

10
(26)

gives acceleration. At t = 23, this gives acceleration as

f ′(23) =
21

40
cos

161

40
− 1

10
sin

23

10
miles/min2 (27)

∼ −0.40769 miles/min2. (28)

3.4 Part d

Average velocity over 0 ≤ t ≤ 40 is

1

40

∫ 40

0

(
6 + cos

t

10
+ 3 sin

7t

40

)
dt =

1

40

[
6t+ 10 sin

t

10
− 120

7
cos

7t

40

] ∣∣∣∣40
0

(29)

=
1

40

[
240 + 10 sin 4− 120

7
cos 7

]
− 1

40

[
120

7

]
(30)

∼ 5.91627miles/min. (31)

4 Problem 4

4.1 Part a

Inflection points are to be found where f ′′ changes sign—that is, where the slope of f ′

changes from positive to negative or vice versa. Consequently, the function f whose
derivative is pictured has inflection points at x = 1 and at x = 3.

4.2 Part b

the function f is decreasing on the interval [−1, 4] and increasing on the interval [4, 5]
because f ′ is non-positive, with only isolated zeros, on the first of these intervals and
non-negative, with only an isolated zero on the second.

The absolute maximum vale of f must fall at one of the points x = −1 or x = 5. (There can
be no absolute maximum for f at any point interior to (−1, 5) because f ′ does not change
signs from positive to negative anywhere in that interval.) The (unsigned) area bounded
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by f and the x-axis on the interval [−1, 4] is clearly larger than the area between f and the
x-axis on the interval [4, 5], so

−
∫ 4

−1
f ′(t) dt = f(−1)− f(4) > f(5)− f(4) =

∫ 5

4
f ′(t) dt, (32)

whence

f(−1) > f(5), (33)

so the absolute maximum value taken on in the interval [−1, 5] is f(−1).

4.3 Part c

We are given that g(x) = xf(x), so

g′(2) = f(2) + 2f ′(2) = 6 + 2 · (−1) = 4. (34)

Also

g(2) = 2f(2) = 12. (35)

An equation for the line tangent to the graph at x = 2 is therefore

y = 12 + 4(x− 2), or (36)
y = 4x+ 4. (37)

5 Problem 5

5.1 Part a

The average value of g(x) = x−1/2 on the interval [1, 4] is

1

4− 1

∫ 4

1

dx√
x
=

2

3

√
x

∣∣∣∣4
1

=
2

3

√
4− 2

3

√
1 =

2

3
. (38)

5.2 Part b

The volume of the solid generated when the region bounded by the graph of y = g(x), the
vertical lines x = 1 and x = 4, and the x-axis is revolved about the x-axis is

π

∫ 4

1

dx

x
= π lnx

∣∣∣∣4
1

= π ln 4. (39)
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5.3 Part c

The average value of the areas of the cross sections perpendicular to the x-axis is

π

4− 1

∫ 4

1

dx

x
=
π

3
ln 4. (40)

5.4 Part d

We have ∫ ∞
4

g(x) dx = lim
T→∞

∫ T

4

dx√
x

(41)

= lim
T→∞

2x1/2
∣∣∣∣T
4

(42)

= 2 lim
T→∞

[√
T − 2

]
, (43)

which does not exist. Consequently, the improper integral
∫∞
4 g(x) dx diverges.

However,

lim
b→∞

[
1

b− 4

∫ b

4

dx√
x

]
= 2 lim

b→∞

√
b− 2

b− 4
(44)

= 2 lim
b→∞

����√
b− 2

�����
(
√
b− 2)(

√
b+ 2)

= 0. (45)

The average value is not only finite, it’s zero!

6 Problem 6

6.1 Part a

If n > 1, then ∫ 1

0
xn dx =

xn+1

n+ 1

∣∣∣∣1
0

=
1n+1

n+ 1
− 0n+1

n+ 1
=

1

n+ 1
. (46)
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6.2 Part b

If n > 1 and y = xn, then

y′ = nxn−1, so (47)

y′
∣∣∣∣
x=1

= n. (48)

It follows that the equation of the line tangent to y = xn at (1, 1) is

y = 1 + n(x− 1). (49)

This line crosses the x-axis at x = 1 − 1

n
, so that the base of the triangle T has length

1

n
.

The altitude of T is one, so the area of T is
1

2n
.

6.3 Part c

From what we have seen in Parts a and b, above, the area, A(n) of the region S, as a
function of n, is

A(n) =
1

n+ 1
− 1

2n
=

n− 1

2n2 + 2n
. (50)

Thus,

A′(n) =
(2n2 + 2n)− (n− 1)(4n+ 2)

4n2(n+ 1)2
(51)

= −n
2 − 2n− 1

2n2(n+ 1)2
. (52)

When n > 0, we see thatA′(n) = 0 only for n = 1+
√
2, by the Quadratic Formula. Noting

that A′(n) > 0 for 1 ≤ n < 1 +
√
2 but that A′(n) < 0 for 1 +

√
2 < n, we conclude, by the

First Derivative Test, that the maximal area occurs when n = 1 +
√
2.
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