AP Calculus 2004 BC (Form B) FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

July 26, 2017

1 Problem 1

1.1 Part a

If a particle's position at time t is given by $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, and its velocity $\mathbf{v}(t)$ is given by

$$
\begin{equation*}
\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=\frac{d}{d t}\langle x(t), y(t)\rangle=\left\langle\sqrt{t^{4}+9}, 2 e^{t}+5 e^{-t}\right\rangle \tag{1}
\end{equation*}
$$

then its speed $\sigma(t)$ at time t is given by

$$
\begin{align*}
\sigma(t) & =|\mathbf{v}(t)|=\sqrt{\mathbf{v}(t) \cdot \mathbf{v}(t)}=\sqrt{\left(t^{4}+9\right)+\left(2 e^{t}+5 e^{-t}\right)^{2}}, \text { so } \tag{2}\\
\sigma(0) & =\sqrt{58} \sim 7.61577 . \tag{3}
\end{align*}
$$

Its acceleration $\mathbf{a}(t)$ at time t is

$$
\begin{align*}
\mathbf{a}(t) & =\mathbf{v}^{\prime}(t) \tag{4}\\
& =\frac{d}{d t}\left\langle\sqrt{t^{4}+9}, 2 e^{t}+5 e^{-t}\right\rangle \tag{5}\\
& =\left\langle\frac{2 t}{\sqrt{t^{4}+9}}, 2 e^{t}-5 e^{-t}\right\rangle, \text { and } \tag{6}\\
\mathbf{a}(0) & =\langle 0,-3\rangle . \tag{7}
\end{align*}
$$

1.2 Part b

The tangent vector $\mathbf{T}(t)$ is

$$
\begin{align*}
\mathbf{T}(t) & =\mathbf{v}(t), \text { so that } \tag{8}\\
\mathbf{T}(0) & =\langle 3,7\rangle . \tag{9}
\end{align*}
$$

The slope of a line parallel to the tangent vector is $\frac{7}{3}$, so an equation for the line tangent to the curve at $\mathbf{r}(0)=\langle 4,1\rangle$ is

$$
\begin{equation*}
y=1+\frac{7}{3}(x-4) . \tag{10}
\end{equation*}
$$

The equation can also be written in vector notation:

$$
\begin{equation*}
\mathbf{r}(t)=\langle 4,1\rangle+t\langle 3,7\rangle=\langle 4+3 t, 1+7 t\rangle . \tag{11}
\end{equation*}
$$

Alternately, we can put $\mathbf{R}=\langle x, y, 0\rangle$ and write

$$
\begin{equation*}
(\mathbf{R}-\langle 4,1,0\rangle) \times\langle 3,7,0\rangle=\mathbf{0}, \tag{12}
\end{equation*}
$$

where " \times " denotes the vector cross-product and $\mathbf{0}=\langle 0,0,0\rangle$.

1.3 Part c

Total distance traveled over the interval $[0,3]$ is the integral of speed over that interval:

$$
\begin{equation*}
\int_{0}^{3} \sigma(\tau) d \tau=\int_{0}^{3} \sqrt{\left(\tau^{4}+9\right)+\left(2 e^{\tau}+5 e^{-\tau}\right)^{2}} d \tau \sim 45.22682 \tag{13}
\end{equation*}
$$

where we have carried out the integration numerically.

1.4 Part d

The x-coordinate of the particle at time $t=3$ is

$$
\begin{align*}
x(t) & =x(0)+\int_{0}^{3} x^{\prime}(\tau) d \tau \tag{14}\\
& =4+\int_{0}^{3} \sqrt{\tau^{4}+9} d \tau \sim 17.93079 \tag{15}
\end{align*}
$$

2 Problem 2

2.1 Part a

If $T_{n}(x)=\sum_{k=0}^{n} a_{k}(x-a)^{k}$ is a Taylor polynomial for the function f, then

$$
\begin{equation*}
a_{k}=\frac{f^{(k)}(a)}{k!}, \text { for } k=1, \ldots, n \tag{16}
\end{equation*}
$$

From what is given here, we deduce that $f(2)=7$ and $f^{\prime \prime}(2)=-18$.

2.2 Part b

Reasoning as in Part a, above, we find that $f^{\prime}(2)=0$, so f has a critical point at $x=3$. Because $f^{\prime \prime}(2)=-18$, the Second Derivative Test allows us to conclude that f has a local maximum at $x=2$.

2.3 Part c

$$
\begin{equation*}
f(0) \sim 7-9 \cdot(-2)^{2}-3 \cdot(-2)^{3}=-5 . \tag{17}
\end{equation*}
$$

There is not enough information to determine whether f has a critical point at $x=0$. This is because the third degree Taylor Polynomial carries no information about derivatives at any point other than the point about which the expansion has been done; it is determined solely by the values of the function and its first three derivatives at that point.

2.4 Part d

The Lagrange Remainder, R_{3}, for the third degree Taylor polynomial of t at $x=2$ has the form

$$
\begin{equation*}
R_{3}=\frac{f^{(4)}(\xi)}{4!}(x-2)^{4} \tag{18}
\end{equation*}
$$

where ξ is some unknown number in the interval whose endpoints are x and 2 . Thus,

$$
\begin{equation*}
f(0)=T_{3}(0)+\frac{1}{24} f^{(4)}(\xi)(0-2)^{4} \tag{19}
\end{equation*}
$$

for a certain $\xi \in[0,2]$. But $\left|f^{(4)}(x)\right| \leq 6$ for all $x \in[0,2]$, so

$$
\begin{equation*}
|f(0)-T(0)| \leq \frac{6}{24} \cdot 16=4 \tag{20}
\end{equation*}
$$

We have seen in part c, above, that $T_{3}(0)=-5$. Hence

$$
\begin{equation*}
-4 \leq f(0)-(-5) \leq 4 \tag{21}
\end{equation*}
$$

whence

$$
\begin{equation*}
-9 \leq f(0) \leq-1 \tag{22}
\end{equation*}
$$

so that $f(0)$ must be negative.

3 Problem 3

3.1 Part a

The Midpoint Rule with four subintervals of equal length gives

$$
\begin{align*}
\int_{0}^{40} v(t) d t & \sim v(5) \cdot(10-0)+v(15) \cdot(20-10)+v(25) \cdot(30-20)+v(35) \cdot(40-30) \tag{23}\\
& \sim(9.2+7.0+2.4+4.3) \cdot 10=229 \tag{24}
\end{align*}
$$

The integral gives miles the plane traveled during the time interval $0 \leq t \leq 40$.

3.2 Part b

By Rolle's Theorem, acceleration-which is $v^{\prime}(t)$-must be zero at least once in the interval $0 \leq t \leq 15$ because $v(0)=v(15)$. Similarly, $v^{\prime}(t)$ must be zero at least once in the interval $25 \leq t \leq 30$, because $v(25)=v(30)$. Thus, acceleration must vanish at least twice in the interval $0 \leq t \leq 40$.

3.3 Part c

If the plane's velocity is given by

$$
\begin{equation*}
f(t)=6+\cos \frac{t}{10}+3 \sin \frac{7 t}{40} \tag{25}
\end{equation*}
$$

then

$$
\begin{equation*}
f^{\prime}(t)=\frac{21}{40} \cos \frac{7 t}{40}-\frac{1}{10} \sin \frac{t}{10} \tag{26}
\end{equation*}
$$

gives acceleration. At $t=23$, this gives acceleration as

$$
\begin{align*}
f^{\prime}(23) & =\frac{21}{40} \cos \frac{161}{40}-\frac{1}{10} \sin \frac{23}{10} \text { miles } / \mathrm{min}^{2} \tag{27}\\
& \sim-0.40769 \text { miles } / \mathrm{min}^{2} . \tag{28}
\end{align*}
$$

3.4 Part d

Average velocity over $0 \leq t \leq 40$ is

$$
\begin{align*}
\frac{1}{40} \int_{0}^{40}\left(6+\cos \frac{t}{10}+3 \sin \frac{7 t}{40}\right) d t & =\left.\frac{1}{40}\left[6 t+10 \sin \frac{t}{10}-\frac{120}{7} \cos \frac{7 t}{40}\right]\right|_{0} ^{40} \tag{29}\\
& =\frac{1}{40}\left[240+10 \sin 4-\frac{120}{7} \cos 7\right]-\frac{1}{40}\left[\frac{120}{7}\right] \tag{30}\\
& \sim 5.91627 \mathrm{miles} / \mathrm{min} . \tag{31}
\end{align*}
$$

4 Problem 4

4.1 Part a

Inflection points are to be found where $f^{\prime \prime}$ changes sign-that is, where the slope of f^{\prime} changes from positive to negative or vice versa. Consequently, the function f whose derivative is pictured has inflection points at $x=1$ and at $x=3$.

4.2 Part b

the function f is decreasing on the interval $[-1,4]$ and increasing on the interval $[4,5]$ because f^{\prime} is non-positive, with only isolated zeros, on the first of these intervals and non-negative, with only an isolated zero on the second.

The absolute maximum vale of f must fall at one of the points $x=-1$ or $x=5$. (There can be no absolute maximum for f at any point interior to $(-1,5)$ because f^{\prime} does not change signs from positive to negative anywhere in that interval.) The (unsigned) area bounded
by f and the x-axis on the interval $[-1,4]$ is clearly larger than the area between f and the x-axis on the interval $[4,5]$, so

$$
\begin{equation*}
-\int_{-1}^{4} f^{\prime}(t) d t=f(-1)-f(4)>f(5)-f(4)=\int_{4}^{5} f^{\prime}(t) d t \tag{32}
\end{equation*}
$$

whence

$$
\begin{equation*}
f(-1)>f(5) \tag{33}
\end{equation*}
$$

so the absolute maximum value taken on in the interval $[-1,5]$ is $f(-1)$.

4.3 Part c

We are given that $g(x)=x f(x)$, so

$$
\begin{equation*}
g^{\prime}(2)=f(2)+2 f^{\prime}(2)=6+2 \cdot(-1)=4 . \tag{34}
\end{equation*}
$$

Also

$$
\begin{equation*}
g(2)=2 f(2)=12 . \tag{35}
\end{equation*}
$$

An equation for the line tangent to the graph at $x=2$ is therefore

$$
\begin{align*}
& y=12+4(x-2), \text { or } \tag{36}\\
& y=4 x+4 \tag{37}
\end{align*}
$$

5 Problem 5

5.1 Part a

The average value of $g(x)=x^{-1 / 2}$ on the interval $[1,4]$ is

$$
\begin{equation*}
\frac{1}{4-1} \int_{1}^{4} \frac{d x}{\sqrt{x}}=\left.\frac{2}{3} \sqrt{x}\right|_{1} ^{4}=\frac{2}{3} \sqrt{4}-\frac{2}{3} \sqrt{1}=\frac{2}{3} . \tag{38}
\end{equation*}
$$

5.2 Part b

The volume of the solid generated when the region bounded by the graph of $y=g(x)$, the vertical lines $x=1$ and $x=4$, and the x-axis is revolved about the x-axis is

$$
\begin{equation*}
\pi \int_{1}^{4} \frac{d x}{x}=\left.\pi \ln x\right|_{1} ^{4}=\pi \ln 4 \tag{39}
\end{equation*}
$$

5.3 Part c

The average value of the areas of the cross sections perpendicular to the x-axis is

$$
\begin{equation*}
\frac{\pi}{4-1} \int_{1}^{4} \frac{d x}{x}=\frac{\pi}{3} \ln 4 \tag{40}
\end{equation*}
$$

5.4 Part d

We have

$$
\begin{align*}
\int_{4}^{\infty} g(x) d x & =\lim _{T \rightarrow \infty} \int_{4}^{T} \frac{d x}{\sqrt{x}} \tag{41}\\
& =\left.\lim _{T \rightarrow \infty} 2 x^{1 / 2}\right|_{4} ^{T} \tag{42}\\
& =2 \lim _{T \rightarrow \infty}[\sqrt{T}-2] \tag{43}
\end{align*}
$$

which does not exist. Consequently, the improper integral $\int_{4}^{\infty} g(x) d x$ diverges. However,

$$
\begin{align*}
\lim _{b \rightarrow \infty}\left[\frac{1}{b-4} \int_{4}^{b} \frac{d x}{\sqrt{x}}\right] & =2 \lim _{b \rightarrow \infty} \frac{\sqrt{b}-2}{b-4} \tag{44}\\
& =2 \lim _{b \rightarrow \infty} \frac{\sqrt{b}-2}{(\sqrt{b}-2)(\sqrt{b}+2)}=0 . \tag{45}
\end{align*}
$$

The average value is not only finite, it's zero!

6 Problem 6

6.1 Part a

If $n>1$, then

$$
\begin{equation*}
\int_{0}^{1} x^{n} d x=\left.\frac{x^{n+1}}{n+1}\right|_{0} ^{1}=\frac{1^{n+1}}{n+1}-\frac{0^{n+1}}{n+1}=\frac{1}{n+1} . \tag{46}
\end{equation*}
$$

6.2 Part b

If $n>1$ and $y=x^{n}$, then

$$
\begin{align*}
y^{\prime} & =n x^{n-1}, \text { so } \tag{47}\\
\left.y^{\prime}\right|_{x=1} & =n . \tag{48}
\end{align*}
$$

It follows that the equation of the line tangent to $y=x^{n}$ at $(1,1)$ is

$$
\begin{equation*}
y=1+n(x-1) . \tag{49}
\end{equation*}
$$

This line crosses the x-axis at $x=1-\frac{1}{n}$, so that the base of the triangle T has length $\frac{1}{n}$. The altitude of T is one, so the area of T is $\frac{1}{2 n}$.

6.3 Part c

From what we have seen in Parts a and b, above, the area, $A(n)$ of the region S, as a function of n, is

$$
\begin{equation*}
A(n)=\frac{1}{n+1}-\frac{1}{2 n}=\frac{n-1}{2 n^{2}+2 n} \tag{50}
\end{equation*}
$$

Thus,

$$
\begin{align*}
A^{\prime}(n) & =\frac{\left(2 n^{2}+2 n\right)-(n-1)(4 n+2)}{4 n^{2}(n+1)^{2}} \tag{51}\\
& =-\frac{n^{2}-2 n-1}{2 n^{2}(n+1)^{2}} . \tag{52}
\end{align*}
$$

When $n>0$, we see that $A^{\prime}(n)=0$ only for $n=1+\sqrt{2}$, by the Quadratic Formula. Noting that $A^{\prime}(n)>0$ for $1 \leq n<1+\sqrt{2}$ but that $A^{\prime}(n)<0$ for $1+\sqrt{2}<n$, we conclude, by the First Derivative Test, that the maximal area occurs when $n=1+\sqrt{2}$.

