AP Calculus 2004 BC FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

July 21, 2017

1 Problem1

1.1 Parta

The function F(t) = 82 + 4sin(t/2) gives the rate, in cars per minute, at which cars pass
through the intersection. Thus, the total number of cars that pass through the intersection
in the period 0 <t < 30is

30 30 ot
/0 F(t)dt = /0 {82 + 4sin 2} dt (1)

30
2)
0

— [2460 — 8 cos 15] — [0 — 8] ~ 2474.07750, 3)

t
— (82t — -
|:8 8 cos 2:|

or 2474 to the nearest whole number.

1.2 Partb

t
F'(t) = 2cos 37 50 (4)
F'(7) = 2008% ~ —1.87291 < 0, )

and, I’ being a continuous function, we conclude that traffic flow is decreasing near t = 7
because F'(7) < 0 and F’ is continuous near ¢t = 7. (We have phrased our answer this
way because the terms “increasing” and “decreasing” are almost always defined only for
intervals, and not at individual points.)



1.3 Partc

The average value, in cars per minute, of traffic flow over the interval 10 <t < 151is

1 15 1 Al
F(t)dt = — |82t — 8 cos — 6
15—10/10 ®) 5{ COSQ] o ©)
1 1
= - <410+8COS5—8COS5) 7)
) 2
~ 81.89924 cars per minute. (8)
1.4 Partd
The average rate of change of the traffic flow over the interval 10 < ¢ < 15is
F(15) — F(1 4sin(15/2) — 4 i
(15) (10) = sin(15/2) s 5 cars per minute per minute 9)
15—-10 )
~ 1.51754 cars per minute per minute. (10)
2 Problem 2
Throughout this problem we understand that
f(z) =2z(1 —x) and (11)
g(z) = 3(z — 1)Vx (12)

for0 <z <1.



2.1 Parta

The graphs of the curves y = f(z) and y — g(x) intersect on the z-axis at + = 0 and at

2 = 1. Thus, the area between the two curves is

1 1
[ @ — gt = [ 2001 -2) - 3 - )Va] do
0 0

1
= / [3:51/2 + 22 — 32%/2 — 2:1:2} dx
0

6 2 !
_ {23:3/2 Tip. 5x5/2 _ 3x3]

0
2 17

6
= 241---2|-0=—.
[Jr 5 3} 0=15

2.2 Partb

(13)

(14)

(15)

(16)

The volume of the solid generated by rotating the shaded region about the horizontal line

y=2is
1 , ,
[ tre gt ~ 2~ @)
0
1
= 7T/ (4904 — 1723 + 302% + 122%/%2 — 172 — 12331/2) dx
0
17 24 17 4
= 3/2 72_75/2_ 3 74_75
103
= 27077 ~ 16.17920.
2.3 Partc

The volume of the solid given is

1 1 9
/ [h(z) — g(x)])* dz = / [kzx(1—2) — 3(x — 1)y/z| dx
0 0

Thus, the desired equation is

/1 [kx(1 —z) — 3(z — 1)\/5]2dx = 15.
0

1

0

17)

(18)

(19)

(20)

(1)

(22)



Note: Solving equation (22) is not required, so evaluation of the integral is also not neces-
sary. However,

/1 [kz(1 — ) — 3(x — 1)y/z]  do = Ly 323 (23)
0 30 1057 4’
and solution of the resulting quadratic equation for k£ > 0 gives
vV — 64
k= % ~ 16.60398. (24)
3 Problem 3
Throughout this problem, we have
Z—i =3+ cost?; (25)
z(2) = 1; (26)
y(2) = 8. 27)
3.1 Parta
By the Fundamental Theorem of Calculus,
4 4
x(4) = x(2) + / 2(t)dt =1+ / (3 + cost?) dt. (28)
2 2

Numerical integration gives (2) ~ 7.13200.

3.2 Partb

If we assume that we can solve the parametric equations, at least locally, near x = 2 for y
as function of z, the Chain Rule yields

dy dy dx

dt ~ dv dt’ (29)
dy dy/dt

29 _ . 30
de  dz/dt (30)



But

d
il = -7, and
dt =g
dz 9
— =3 +cost = 3 + cos 4.
dt |-y =2
Thus,
d
W T 99833
dx|,_, 3+ cos4
An equation for the line tangent to the curve at (z(2),y(2)) is therefore
7
=8 ——(z—1).
Y 3+ cos4 (z—1)

3.3 Partc

Speed o (t) at time ¢ is given by
o(t) = lu(t)] = V&' (1) + [y ()]

Therefore

0(2) = V') + [y (2)2
= /(=7)2 + (3 + cos4)2 ~ 7.38278.

3.4 Partd

(1)

(32)

(33)

(34)

(35)

(36)
(37)

Let us suppose that the slope of the tangent line at (x(t), y(¢)) is (2t +1) when ¢ > 3. From

our observations in Part b, above, we have
dy dy dx

dt — dz dt
= (2t +1)(3 + cos t?)

when t > 3. Therefore

d2
d%y
7 = 2(3 + costQ) +(2t+1)- (—2tsint2).

When ¢ = 4, this gives the acceleration vector a(4) as

a(4) = ( — 8sin 16,6 + 2cos 16 — 72sin 16) ~ (2.30323, 28.81372).
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(38)
(39)

(40)

(41)

(42)



4 Problem 4

41 Parta

From
2?4+ 4y? =7+ 3xy (43)

we obtain, by implicit differentiation with respect to z, treating y as (locally) a function of
z,

2z + 8yy’ = 3y + 31/, (44)
so that
S8yy' — 3xy = 3y — 2z, (45)
or
dy , 3y —2x
Ly = . 46
dx Y 8y — 3z (46)
4.2 Partb

If we are to have v/ = 0 in Part a, above, then we must have, from (46),

, 3y —2zx

O: p—
Y78y 3¢

(47)

and from this we conclude that 3y — 22 = 0. But we are given that z = 3, and so y = 2.
These values for z and y give

24y =32 4+4-22=9416=25=T7+18=7+3-3-2 =7+ 3ay, (48)
showing that the point (3, 2) lies on the curve. The point P = (3,2) thus meets our re-

quirements.

4.3 Partc

From Part a, above, we have

(8y — 3x)y’ = 3y — 2x. (49)



Another implicit differentiation with respect to x then gives
By = 3)y" + By —3x)y" =3y — 2. (50)

At (3,2), as we have seen above, we have y' = 0. Substituting these values for z, y, and ¢/
in equation (50) gives

(8:0-3)-0+(8-2—-3-3)y" =3-0-2, (51)
whence

y// _

9
220 (52)
32

We conclude, from the Second Derivative Test, that the curve has a local maximum at
(3,2).

5 Problem 5

In this problem, we are given that

dP P P
— =" (1-2).
=5 (1) 2

5.1 Parta

Equilibrium solutions are P(¢t) = 0 and P(t) = 12. For 0 < P < 12, P'(t) > 0, while for
12 < P, P'(t) < 0. Hence, any solution whose initial value is positive will be asymptotic
to the equilibrium solution P(t) = 12. (Here we interpret a horizontal line as its own
horizontal asymptote.) Both of the required limits are therefore 12.

5.2 Partb

P(t) grows fastest when P’(t) is maximal. This can happen only when P = 3 (the end-
point of the interval under consideration) or or at a critical point for P’. But by (53),

P 1 P P 1 P
—_— =l - === - = 54

dt? 5 < ) 60 5 30’ (54)
and this vanishes when P = 6.

When P = 3, P’ = 9/20, and when P = 6, P’ = 3/5. The latter is the larger, so P grows
fastest when P = 6.



5.3 Partc

If

Yi(t) = %Y(t) <1 - 12) (55)
and

Y(0) =3 (56)
then

1;((;)) — é (1 - 1’;) . (57)

Because Y is the solution of a differential equation and Y'(0) = 3, Y is a continuous func-
tion and there is an positive number § such that Y (¢) > 0 for all ¢ € (-9, ). If we choose
t € (—9,6) then

LY'(r) 1 t T
/0 v 4= 5/0 [1 _ ﬁ} dr, (58)
or
ny(n| =2 [ 59
2
InY(t) —InY(0) = % (t — ;4) . (60)
But Y (0) = 3, so this is
lnY(t):1n3+% (t—i). (61)
Finally,
Y (t) = 3exp [; (t — Z)] , (62)

where we have taken exp u to mean e*.
54 Partd
Ast — oo, % (t — %) — —o0. Thus, lim;_,o, Y (t) = 0.
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6 Problem 6

6.1 Parta
If f is given by
f(z) = sin (53: + 2) , (63)
and P3(x) is the third degree Taylor polynomial for f about « = 0, then
1 1
Py(z) = £(0) + £ (0)x + 5 f"(0)2" + < f"(0)a". (64)
Now
/ m
f'(z) =5cos (53} + Z) ; (65)
f"(x) = —25sin (530 + %) ; (66)
" (z) = —125cos (533 + Z) , (67)
and, indeed,
FA) () = 5% sin (5ac + %) , (68)
FERFD () = 54%H1 ¢og (530 + %) ; (69)
(4k+2) _ _ (r4k+2Y o T
f (x) (5 ) sin (5.%' + 4) , (70)
(4k+3) _ _ (r4Kk+3 T
f (x) (5 ) cos (537 + 4) (71)
fork=0,1,2,....
Thus,
V2 5V2 0 25V2 5 125V2 4
Pg(ﬂ:)—7+ I A T et (72)
6.2 Partb

Using what we have seen in Part a, above, we find that the coefficient of 222 in the Taylor
series for f about z = 0 is
f(22) (0) f(4-5+2) (0) 522\/5

22— 92~ 2.2 (73)
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6.3 Partc

The Lagrange Remainder, Rj3 for the third degree Taylor series at x = 0 has the form

ARG
By = —5pat, 74)

where £ is some number that lies between 0 and x. Now,

FD(z) = 51sin (595 + %) . (75)

/()

for some ¢ € (0, ;). Hence

Thus,

_p, <110> N 54 Sin(52§4+ m/4) <110>4 (76)

1 1 ;ff sin(5¢ 4 /4) 1 1 1
— )= < =— < — 77
‘f<10> b (10)‘ 1 (320 |~ 2124 384 " 100 @7)
where we have made use of the fact that |sinu| < 1 for all real w.
6.4 Partd
We obtain the third degree Taylor polynomial, T73(z), about = 0 for
- [ s (78)
0
by integrating the second degree Taylor polynomial for f from 0 to x.
Tiw) = [ Pa(€)de 79)
0
V2 5v2 25xf
- [ |5+ e e (50)
0
V2 5\f 25\/
[5 +— 1 BTH , (81)
VI 53, 25V3
—7$+ PEEARRET R (82)
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