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1 Problem 1

1.1 Part a

The function F (t) = 82 + 4 sin(t/2) gives the rate, in cars per minute, at which cars pass
through the intersection. Thus, the total number of cars that pass through the intersection
in the period 0 ≤ t ≤ 30 is∫ 30

0
F (t) dt =

∫ 30

0

[
82 + 4 sin

t

2

]
dt (1)

=

[
82t− 8 cos

t

2

] ∣∣∣∣30
0

(2)

= [2460− 8 cos 15]− [0− 8] ∼ 2474.07750, (3)

or 2474 to the nearest whole number.

1.2 Part b

F ′(t) = 2 cos
t

2
, so (4)

F ′(7) = 2 cos
7

2
∼ −1.87291 < 0, (5)

and, F ′ being a continuous function, we conclude that traffic flow is decreasing near t = 7
because F ′(7) < 0 and F ′ is continuous near t = 7. (We have phrased our answer this
way because the terms “increasing” and “decreasing” are almost always defined only for
intervals, and not at individual points.)
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1.3 Part c

The average value, in cars per minute, of traffic flow over the interval 10 ≤ t ≤ 15 is

1

15− 10

∫ 15

10
F (t) dt =

1

5

[
82t− 8 cos

t

2

] ∣∣∣∣15
10

(6)

=
1

5

(
410 + 8 cos 5− 8 cos

15

2

)
(7)

∼ 81.89924 cars per minute. (8)

1.4 Part d

The average rate of change of the traffic flow over the interval 10 ≤ t ≤ 15 is

F (15)− F (10)
15− 10

=
4 sin(15/2)− 4 sin 5

5
cars per minute per minute (9)

∼ 1.51754 cars per minute per minute. (10)

2 Problem 2

Throughout this problem we understand that

f(x) = 2x(1− x) and (11)
g(x) = 3(x− 1)

√
x (12)

for 0 ≤ x ≤ 1.
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2.1 Part a

The graphs of the curves y = f(x) and y − g(x) intersect on the x-axis at x = 0 and at
x = 1. Thus, the area between the two curves is∫ 1

0
[f(x)− g(x)] dx =

∫ 1

0

[
2x(1− x)− 3(x− 1)

√
x
]
dx (13)

=

∫ 1

0

[
3x1/2 + 2x− 3x3/2 − 2x2

]
dx (14)

=

[
2x3/2 + x2 − 6

5
x5/2 − 2

3
x3
] ∣∣∣∣1

0

(15)

=

[
2 + 1− 6

5
− 2

3

]
− 0 =

17

15
. (16)

2.2 Part b

The volume of the solid generated by rotating the shaded region about the horizontal line
y = 2 is ∫ 1

0

[
π[2− g(x)]2 − π[2− f(x)]2

]
dx (17)

= π

∫ 1

0

(
4x4 − 17x3 + 30x2 + 12x3/2 − 17x− 12x1/2

)
dx (18)

= π

(
8x3/2 +

17

2
x2 − 24

5
x5/2 − 10x3 +

17

4
x4 − 4

5
x5
) ∣∣∣∣1

0

(19)

=
103

20
π ∼ 16.17920. (20)

2.3 Part c

The volume of the solid given is∫ 1

0
[h(x)− g(x)]2 dx =

∫ 1

0

[
kx(1− x)− 3(x− 1)

√
x
]2
dx (21)

Thus, the desired equation is∫ 1

0

[
kx(1− x)− 3(x− 1)

√
x
]2
dx = 15. (22)
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Note: Solving equation (22) is not required, so evaluation of the integral is also not neces-
sary. However, ∫ 1

0

[
kx(1− x)− 3(x− 1)

√
x
]2
dx =

1

30
k2 +

32

105
k +

3

4
, (23)

and solution of the resulting quadratic equation for k > 0 gives

k =

√
87886− 64

14
∼ 16.60398. (24)

3 Problem 3

Throughout this problem, we have

dx

dt
= 3 + cos t2; (25)

x(2) = 1; (26)
y(2) = 8. (27)

3.1 Part a

By the Fundamental Theorem of Calculus,

x(4) = x(2) +

∫ 4

2
x′(t) dt = 1 +

∫ 4

2
(3 + cos t2) dt. (28)

Numerical integration gives x(2) ∼ 7.13200.

3.2 Part b

If we assume that we can solve the parametric equations, at least locally, near x = 2 for y
as function of x, the Chain Rule yields

dy

dt
=
dy

dx
· dx
dt
, or (29)

dy

dx
=
dy/dt

dx/dt
. (30)
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But
dy

dt

∣∣∣∣
t=2

= −7, and (31)

dx

dt

∣∣∣∣
t=2

= 3 + cos t2
∣∣∣∣
t=2

= 3 + cos 4. (32)

Thus,

dy

dx

∣∣∣∣
t=2

= − 7

3 + cos 4
∼ −2.98335 (33)

An equation for the line tangent to the curve at
(
x(2), y(2)

)
is therefore

y = 8− 7

3 + cos 4
(x− 1). (34)

3.3 Part c

Speed σ(t) at time t is given by

σ(t) = |v(t)| =
√
[x′(t)]2 + [y′(t)]2. (35)

Therefore

σ(2) =
√
[x′(2)]2 + [y′(2)]2 (36)

=
√
(−7)2 + (3 + cos 4)2 ∼ 7.38278. (37)

3.4 Part d

Let us suppose that the slope of the tangent line at
(
x(t), y(t)

)
is (2t+1) when t ≥ 3. From

our observations in Part b, above, we have
dy

dt
=
dy

dx
· dx
dt

(38)

= (2t+ 1)(3 + cos t2) (39)

when t ≥ 3. Therefore

d2x

dt2
= −2t sin t2 and (40)

d2y

dt2
= 2(3 + cos t2) + (2t+ 1) · (−2t sin t2). (41)

When t = 4, this gives the acceleration vector a(4) as

a(4) =
〈
− 8 sin 16, 6 + 2 cos 16− 72 sin 16

〉
∼ 〈2.30323, 28.81372〉. (42)
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4 Problem 4

4.1 Part a

From

x2 + 4y2 = 7 + 3xy (43)

we obtain, by implicit differentiation with respect to x, treating y as (locally) a function of
x,

2x+ 8yy′ = 3y + 3xy′, (44)

so that

8yy′ − 3xy′ = 3y − 2x, (45)

or

dy

dx
= y′ =

3y − 2x

8y − 3x
. (46)

4.2 Part b

If we are to have y′ = 0 in Part a, above, then we must have, from (46),

0 = y′ =
3y − 2x

8y − 3x
, (47)

and from this we conclude that 3y − 2x = 0. But we are given that x = 3, and so y = 2.
These values for x and y give

x2 + 4y2 = 32 + 4 · 22 = 9 + 16 = 25 = 7 + 18 = 7 + 3 · 3 · 2 = 7 + 3xy, (48)

showing that the point (3, 2) lies on the curve. The point P = (3, 2) thus meets our re-
quirements.

4.3 Part c

From Part a, above, we have

(8y − 3x)y′ = 3y − 2x. (49)
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Another implicit differentiation with respect to x then gives

(8y′ − 3)y′ + (8y − 3x)y′′ = 3y′ − 2. (50)

At (3, 2), as we have seen above, we have y′ = 0. Substituting these values for x, y, and y′

in equation (50) gives

(8 · 0− 3) · 0 + (8 · 2− 3 · 3)y′′ = 3 · 0− 2, (51)

whence

y′′
∣∣∣∣
(3,2)

= −2

7
< 0. (52)

We conclude, from the Second Derivative Test, that the curve has a local maximum at
(3, 2).

5 Problem 5

In this problem, we are given that

dP

dt
=
P

5

(
1− P

12

)
. (53)

5.1 Part a

Equilibrium solutions are P (t) ≡ 0 and P (t) ≡ 12. For 0 < P < 12, P ′(t) > 0, while for
12 < P , P ′(t) < 0. Hence, any solution whose initial value is positive will be asymptotic
to the equilibrium solution P (t) ≡ 12. (Here we interpret a horizontal line as its own
horizontal asymptote.) Both of the required limits are therefore 12.

5.2 Part b

P (t) grows fastest when P ′(t) is maximal. This can happen only when P = 3 (the end-
point of the interval under consideration) or or at a critical point for P ′. But by (53),

d2P

dt2
=

1

5

(
1− P

12

)
− P

60
=

1

5
− P

30
, (54)

and this vanishes when P = 6.

When P = 3, P ′ = 9/20, and when P = 6, P ′ = 3/5. The latter is the larger, so P grows
fastest when P = 6.
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5.3 Part c

If

Y ′(t) =
1

5
Y (t)

(
1− t

12

)
(55)

and

Y (0) = 3 (56)

then

Y ′(t)

Y (t)
=

1

5

(
1− t

12

)
. (57)

Because Y is the solution of a differential equation and Y (0) = 3, Y is a continuous func-
tion and there is an positive number δ such that Y (t) > 0 for all t ∈ (−δ, δ). If we choose
t ∈ (−δ, δ) then ∫ t

0

Y ′(τ)

Y (τ)
dτ =

1

5

∫ t

0

[
1− τ

12

]
dτ, (58)

or

lnY (τ)

∣∣∣∣t
0

=
1

5

(
τ − τ2

24

) ∣∣∣∣t
0

; (59)

lnY (t)− lnY (0) =
1

5

(
t− t2

24

)
. (60)

But Y (0) = 3, so this is

lnY (t) = ln 3 +
1

5

(
t− t2

24

)
. (61)

Finally,

Y (t) = 3 exp

[
1

5

(
t− t2

24

)]
, (62)

where we have taken expu to mean eu.

5.4 Part d

As t→∞, 1
5

(
t− t2

24

)
→ −∞. Thus, limt→∞ Y (t) = 0.
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6 Problem 6

6.1 Part a

If f is given by

f(x) = sin
(
5x+

π

4

)
, (63)

and P3(x) is the third degree Taylor polynomial for f about x = 0, then

P3(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

6
f ′′′(0)x3. (64)

Now

f ′(x) = 5 cos
(
5x+

π

4

)
; (65)

f ′′(x) = −25 sin
(
5x+

π

4

)
; (66)

f ′′′(x) = −125 cos
(
5x+

π

4

)
, (67)

and, indeed,

f (4k)(x) = 54k sin
(
5x+

π

4

)
, (68)

f (4k+1)(x) = 54k+1 cos
(
5x+

π

4

)
, (69)

f (4k+2)(x) = −
(
54k+2

)
sin
(
5x+

π

4

)
, (70)

f (4k+3)(x) = −
(
54k+3

)
cos
(
5x+

π

4

)
(71)

for k = 0, 1, 2, . . ..

Thus,

P3(x) =

√
2

2
+

5
√
2

2
x− 25

√
2

4
x2 − 125

√
2

12
x3. (72)

6.2 Part b

Using what we have seen in Part a, above, we find that the coefficient of x22 in the Taylor
series for f about x = 0 is

f (22)(0)

22!
=
f (4·5+2)(0)

22!
= −522

√
2

2 · 22!
. (73)
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6.3 Part c

The Lagrange Remainder,R3 for the third degree Taylor series at x = 0 has the form

R3 =
f (4)(ξ)

24
x4, (74)

where ξ is some number that lies between 0 and x. Now,

f (4)(x) = 54 sin
(
5x+

π

4

)
. (75)

Thus,

f

(
1

10

)
= P3

(
1

10

)
+

54 sin(5ξ + π/4)

24
·
(

1

10

)4

(76)

for some ξ ∈
(
0, 1

10

)
. Hence∣∣∣∣f ( 1

10

)
− P3

(
1

10

)∣∣∣∣ =
∣∣∣∣∣��54 sin(5ξ + π/4)

24 · (�5 · 2)4

∣∣∣∣∣ ≤ 1

24 · 24
=

1

384
<

1

100
, (77)

where we have made use of the fact that | sinu| ≤ 1 for all real u.

6.4 Part d

We obtain the third degree Taylor polynomial, T3(x), about x = 0 for

G(x) =

∫ x

0
f(t) dt (78)

by integrating the second degree Taylor polynomial for f from 0 to x.

T3(x) =

∫ x

0
P2(ξ) dξ (79)

=

∫ x

0

[√
2

2
+

5
√
2

2
ξ − 25

√
2

4
ξ2

]
dξ (80)

=

[√
2

2
ξ +

5
√
2

4
ξ2 − 25

√
2

12
ξ3

] ∣∣∣∣x
0

(81)

=

√
2

2
x+

5
√
2

4
x2 − 25

√
2

12
x3. (82)
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