AP Calculus 2004 BC FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

July 21, 2017

1 Problem 1

1.1 Part a

The function $F(t)=82+4 \sin (t / 2)$ gives the rate, in cars per minute, at which cars pass through the intersection. Thus, the total number of cars that pass through the intersection in the period $0 \leq t \leq 30$ is

$$
\begin{align*}
\int_{0}^{30} F(t) d t & =\int_{0}^{30}\left[82+4 \sin \frac{t}{2}\right] d t \tag{1}\\
& =\left.\left[82 t-8 \cos \frac{t}{2}\right]\right|_{0} ^{30} \tag{2}\\
& =[2460-8 \cos 15]-[0-8] \sim 2474.07750 \tag{3}
\end{align*}
$$

or 2474 to the nearest whole number.

1.2 Part b

$$
\begin{align*}
F^{\prime}(t) & =2 \cos \frac{t}{2}, \text { so } \tag{4}\\
F^{\prime}(7) & =2 \cos \frac{7}{2} \sim-1.87291<0, \tag{5}
\end{align*}
$$

and, F^{\prime} being a continuous function, we conclude that traffic flow is decreasing near $t=7$ because $F^{\prime}(7)<0$ and F^{\prime} is continuous near $t=7$. (We have phrased our answer this way because the terms "increasing" and "decreasing" are almost always defined only for intervals, and not at individual points.)

1.3 Part c

The average value, in cars per minute, of traffic flow over the interval $10 \leq t \leq 15$ is

$$
\begin{align*}
\frac{1}{15-10} \int_{10}^{15} F(t) d t & =\left.\frac{1}{5}\left[82 t-8 \cos \frac{t}{2}\right]\right|_{10} ^{15} \tag{6}\\
& =\frac{1}{5}\left(410+8 \cos 5-8 \cos \frac{15}{2}\right) \tag{7}\\
& \sim 81.89924 \text { cars per minute. } \tag{8}
\end{align*}
$$

1.4 Part d

The average rate of change of the traffic flow over the interval $10 \leq t \leq 15$ is

$$
\begin{align*}
\frac{F(15)-F(10)}{15-10} & =\frac{4 \sin (15 / 2)-4 \sin 5}{5} \text { cars per minute per minute } \tag{9}\\
& \sim 1.51754 \text { cars per minute per minute. } \tag{10}
\end{align*}
$$

2 Problem 2

Throughout this problem we understand that

$$
\begin{align*}
& f(x)=2 x(1-x) \text { and } \tag{11}\\
& g(x)=3(x-1) \sqrt{x} \tag{12}
\end{align*}
$$

for $0 \leq x \leq 1$.

2.1 Part a

The graphs of the curves $y=f(x)$ and $y-g(x)$ intersect on the x-axis at $x=0$ and at $x=1$. Thus, the area between the two curves is

$$
\begin{align*}
\int_{0}^{1}[f(x)-g(x)] d x & =\int_{0}^{1}[2 x(1-x)-3(x-1) \sqrt{x}] d x \tag{13}\\
& =\int_{0}^{1}\left[3 x^{1 / 2}+2 x-3 x^{3 / 2}-2 x^{2}\right] d x \tag{14}\\
& =\left.\left[2 x^{3 / 2}+x^{2}-\frac{6}{5} x^{5 / 2}-\frac{2}{3} x^{3}\right]\right|_{0} ^{1} \tag{15}\\
& =\left[2+1-\frac{6}{5}-\frac{2}{3}\right]-0=\frac{17}{15} \tag{16}
\end{align*}
$$

2.2 Part b

The volume of the solid generated by rotating the shaded region about the horizontal line $y=2$ is

$$
\begin{align*}
& \int_{0}^{1}\left[\pi[2-g(x)]^{2}-\pi[2-f(x)]^{2}\right] d x \tag{17}\\
&=\pi \int_{0}^{1}\left(4 x^{4}-17 x^{3}+30 x^{2}+12 x^{3 / 2}-17 x-12 x^{1 / 2}\right) d x \tag{18}\\
&=\left.\pi\left(8 x^{3 / 2}+\frac{17}{2} x^{2}-\frac{24}{5} x^{5 / 2}-10 x^{3}+\frac{17}{4} x^{4}-\frac{4}{5} x^{5}\right)\right|_{0} ^{1} \tag{19}\\
&=\frac{103}{20} \pi \sim 16.17920 \tag{20}
\end{align*}
$$

2.3 Part c

The volume of the solid given is

$$
\begin{equation*}
\int_{0}^{1}[h(x)-g(x)]^{2} d x=\int_{0}^{1}[k x(1-x)-3(x-1) \sqrt{x}]^{2} d x \tag{21}
\end{equation*}
$$

Thus, the desired equation is

$$
\begin{equation*}
\int_{0}^{1}[k x(1-x)-3(x-1) \sqrt{x}]^{2} d x=15 . \tag{22}
\end{equation*}
$$

Note: Solving equation (22) is not required, so evaluation of the integral is also not necessary. However,

$$
\begin{equation*}
\int_{0}^{1}[k x(1-x)-3(x-1) \sqrt{x}]^{2} d x=\frac{1}{30} k^{2}+\frac{32}{105} k+\frac{3}{4}, \tag{23}
\end{equation*}
$$

and solution of the resulting quadratic equation for $k>0$ gives

$$
\begin{equation*}
k=\frac{\sqrt{87886}-64}{14} \sim 16.60398 \tag{24}
\end{equation*}
$$

3 Problem 3

Throughout this problem, we have

$$
\begin{align*}
\frac{d x}{d t} & =3+\cos t^{2} ; \tag{25}\\
x(2) & =1 \tag{26}\\
y(2) & =8 . \tag{27}
\end{align*}
$$

3.1 Part a

By the Fundamental Theorem of Calculus,

$$
\begin{equation*}
x(4)=x(2)+\int_{2}^{4} x^{\prime}(t) d t=1+\int_{2}^{4}\left(3+\cos t^{2}\right) d t . \tag{28}
\end{equation*}
$$

Numerical integration gives $x(2) \sim 7.13200$.

3.2 Part b

If we assume that we can solve the parametric equations, at least locally, near $x=2$ for y as function of x, the Chain Rule yields

$$
\begin{align*}
& \frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}, \text { or } \tag{29}\\
& \frac{d y}{d x}=\frac{d y / d t}{d x / d t} . \tag{30}
\end{align*}
$$

But

$$
\begin{align*}
& \left.\frac{d y}{d t}\right|_{t=2}=-7, \text { and } \tag{31}\\
& \left.\frac{d x}{d t}\right|_{t=2}=3+\left.\cos t^{2}\right|_{t=2}=3+\cos 4 \tag{32}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\left.\frac{d y}{d x}\right|_{t=2}=-\frac{7}{3+\cos 4} \sim-2.98335 \tag{33}
\end{equation*}
$$

An equation for the line tangent to the curve at $(x(2), y(2))$ is therefore

$$
\begin{equation*}
y=8-\frac{7}{3+\cos 4}(x-1) \tag{34}
\end{equation*}
$$

3.3 Part c

Speed $\sigma(t)$ at time t is given by

$$
\begin{equation*}
\sigma(t)=|v(t)|=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} . \tag{35}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\sigma(2) & =\sqrt{\left[x^{\prime}(2)\right]^{2}+\left[y^{\prime}(2)\right]^{2}} \tag{36}\\
& =\sqrt{(-7)^{2}+(3+\cos 4)^{2}} \sim 7.38278 \tag{37}
\end{align*}
$$

3.4 Part d

Let us suppose that the slope of the tangent line at $(x(t), y(t))$ is $(2 t+1)$ when $t \geq 3$. From our observations in Part b, above, we have

$$
\begin{align*}
\frac{d y}{d t} & =\frac{d y}{d x} \cdot \frac{d x}{d t} \tag{38}\\
& =(2 t+1)\left(3+\cos t^{2}\right) \tag{39}
\end{align*}
$$

when $t \geq 3$. Therefore

$$
\begin{align*}
& \frac{d^{2} x}{d t^{2}}=-2 t \sin t^{2} \text { and } \tag{40}\\
& \frac{d^{2} y}{d t^{2}}=2\left(3+\cos t^{2}\right)+(2 t+1) \cdot\left(-2 t \sin t^{2}\right) \tag{41}
\end{align*}
$$

When $t=4$, this gives the acceleration vector $\mathbf{a}(4)$ as

$$
\begin{equation*}
\mathbf{a}(4)=\langle-8 \sin 16,6+2 \cos 16-72 \sin 16\rangle \sim\langle 2.30323,28.81372\rangle . \tag{42}
\end{equation*}
$$

4 Problem 4

4.1 Part a

From

$$
\begin{equation*}
x^{2}+4 y^{2}=7+3 x y \tag{43}
\end{equation*}
$$

we obtain, by implicit differentiation with respect to x, treating y as (locally) a function of x,

$$
\begin{equation*}
2 x+8 y y^{\prime}=3 y+3 x y^{\prime} \tag{44}
\end{equation*}
$$

so that

$$
\begin{equation*}
8 y y^{\prime}-3 x y^{\prime}=3 y-2 x \tag{45}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d y}{d x}=y^{\prime}=\frac{3 y-2 x}{8 y-3 x} . \tag{46}
\end{equation*}
$$

4.2 Part b

If we are to have $y^{\prime}=0$ in Part a, above, then we must have, from (46),

$$
\begin{equation*}
0=y^{\prime}=\frac{3 y-2 x}{8 y-3 x} \tag{47}
\end{equation*}
$$

and from this we conclude that $3 y-2 x=0$. But we are given that $x=3$, and so $y=2$. These values for x and y give

$$
\begin{equation*}
x^{2}+4 y^{2}=3^{2}+4 \cdot 2^{2}=9+16=25=7+18=7+3 \cdot 3 \cdot 2=7+3 x y, \tag{48}
\end{equation*}
$$

showing that the point $(3,2)$ lies on the curve. The point $P=(3,2)$ thus meets our requirements.

4.3 Part c

From Part a, above, we have

$$
\begin{equation*}
(8 y-3 x) y^{\prime}=3 y-2 x \tag{49}
\end{equation*}
$$

Another implicit differentiation with respect to x then gives

$$
\begin{equation*}
\left(8 y^{\prime}-3\right) y^{\prime}+(8 y-3 x) y^{\prime \prime}=3 y^{\prime}-2 \tag{50}
\end{equation*}
$$

At $(3,2)$, as we have seen above, we have $y^{\prime}=0$. Substituting these values for x, y, and y^{\prime} in equation (50) gives

$$
\begin{equation*}
(8 \cdot 0-3) \cdot 0+(8 \cdot 2-3 \cdot 3) y^{\prime \prime}=3 \cdot 0-2, \tag{51}
\end{equation*}
$$

whence

$$
\begin{equation*}
\left.y^{\prime \prime}\right|_{(3,2)}=-\frac{2}{7}<0 . \tag{52}
\end{equation*}
$$

We conclude, from the Second Derivative Test, that the curve has a local maximum at $(3,2)$.

5 Problem 5

In this problem, we are given that

$$
\begin{equation*}
\frac{d P}{d t}=\frac{P}{5}\left(1-\frac{P}{12}\right) . \tag{53}
\end{equation*}
$$

5.1 Part a

Equilibrium solutions are $P(t) \equiv 0$ and $P(t) \equiv 12$. For $0<P<12, P^{\prime}(t)>0$, while for $12<P, P^{\prime}(t)<0$. Hence, any solution whose initial value is positive will be asymptotic to the equilibrium solution $P(t) \equiv 12$. (Here we interpret a horizontal line as its own horizontal asymptote.) Both of the required limits are therefore 12 .

5.2 Part b

$P(t)$ grows fastest when $P^{\prime}(t)$ is maximal. This can happen only when $P=3$ (the endpoint of the interval under consideration) or or at a critical point for P^{\prime}. But by (53),

$$
\begin{equation*}
\frac{d^{2} P}{d t^{2}}=\frac{1}{5}\left(1-\frac{P}{12}\right)-\frac{P}{60}=\frac{1}{5}-\frac{P}{30}, \tag{54}
\end{equation*}
$$

and this vanishes when $P=6$.
When $P=3, P^{\prime}=9 / 20$, and when $P=6, P^{\prime}=3 / 5$. The latter is the larger, so P grows fastest when $P=6$.

5.3 Part c

If

$$
\begin{equation*}
Y^{\prime}(t)=\frac{1}{5} Y(t)\left(1-\frac{t}{12}\right) \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
Y(0)=3 \tag{56}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{Y^{\prime}(t)}{Y(t)}=\frac{1}{5}\left(1-\frac{t}{12}\right) . \tag{57}
\end{equation*}
$$

Because Y is the solution of a differential equation and $Y(0)=3, Y$ is a continuous function and there is an positive number δ such that $Y(t)>0$ for all $t \in(-\delta, \delta)$. If we choose $t \in(-\delta, \delta)$ then

$$
\begin{equation*}
\int_{0}^{t} \frac{Y^{\prime}(\tau)}{Y(\tau)} d \tau=\frac{1}{5} \int_{0}^{t}\left[1-\frac{\tau}{12}\right] d \tau \tag{58}
\end{equation*}
$$

or

$$
\begin{align*}
\left.\ln Y(\tau)\right|_{0} ^{t} & =\left.\frac{1}{5}\left(\tau-\frac{\tau^{2}}{24}\right)\right|_{0} ^{t} \tag{59}\\
\ln Y(t)-\ln Y(0) & =\frac{1}{5}\left(t-\frac{t^{2}}{24}\right) \tag{60}
\end{align*}
$$

But $Y(0)=3$, so this is

$$
\begin{equation*}
\ln Y(t)=\ln 3+\frac{1}{5}\left(t-\frac{t^{2}}{24}\right) . \tag{61}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
Y(t)=3 \exp \left[\frac{1}{5}\left(t-\frac{t^{2}}{24}\right)\right], \tag{62}
\end{equation*}
$$

where we have taken $\exp u$ to mean e^{u}.

5.4 Part d

As $t \rightarrow \infty, \frac{1}{5}\left(t-\frac{t^{2}}{24}\right) \rightarrow-\infty$. Thus, $\lim _{t \rightarrow \infty} Y(t)=0$.

6 Problem 6

6.1 Part a

If f is given by

$$
\begin{equation*}
f(x)=\sin \left(5 x+\frac{\pi}{4}\right) \tag{63}
\end{equation*}
$$

and $P_{3}(x)$ is the third degree Taylor polynomial for f about $x=0$, then

$$
\begin{equation*}
P_{3}(x)=f(0)+f^{\prime}(0) x+\frac{1}{2} f^{\prime \prime}(0) x^{2}+\frac{1}{6} f^{\prime \prime \prime}(0) x^{3} . \tag{64}
\end{equation*}
$$

Now

$$
\begin{align*}
f^{\prime}(x) & =5 \cos \left(5 x+\frac{\pi}{4}\right) \tag{65}\\
f^{\prime \prime}(x) & =-25 \sin \left(5 x+\frac{\pi}{4}\right) \tag{66}\\
f^{\prime \prime \prime}(x) & =-125 \cos \left(5 x+\frac{\pi}{4}\right) \tag{67}
\end{align*}
$$

and, indeed,

$$
\begin{align*}
f^{(4 k)}(x) & =5^{4 k} \sin \left(5 x+\frac{\pi}{4}\right) \tag{68}\\
f^{(4 k+1)}(x) & =5^{4 k+1} \cos \left(5 x+\frac{\pi}{4}\right) \tag{69}\\
f^{(4 k+2)}(x) & =-\left(5^{4 k+2}\right) \sin \left(5 x+\frac{\pi}{4}\right), \tag{70}\\
f^{(4 k+3)}(x) & =-\left(5^{4 k+3}\right) \cos \left(5 x+\frac{\pi}{4}\right) \tag{71}
\end{align*}
$$

for $k=0,1,2, \ldots$.
Thus,

$$
\begin{equation*}
P_{3}(x)=\frac{\sqrt{2}}{2}+\frac{5 \sqrt{2}}{2} x-\frac{25 \sqrt{2}}{4} x^{2}-\frac{125 \sqrt{2}}{12} x^{3} . \tag{72}
\end{equation*}
$$

6.2 Part b

Using what we have seen in Part a, above, we find that the coefficient of x^{22} in the Taylor series for f about $x=0$ is

$$
\begin{equation*}
\frac{f^{(22)}(0)}{22!}=\frac{f^{(4 \cdot 5+2)}(0)}{22!}=-\frac{5^{22} \sqrt{2}}{2 \cdot 22!} . \tag{73}
\end{equation*}
$$

6.3 Part c

The Lagrange Remainder, R_{3} for the third degree Taylor series at $x=0$ has the form

$$
\begin{equation*}
R_{3}=\frac{f^{(4)}(\xi)}{24} x^{4} \tag{74}
\end{equation*}
$$

where ξ is some number that lies between 0 and x. Now,

$$
\begin{equation*}
f^{(4)}(x)=5^{4} \sin \left(5 x+\frac{\pi}{4}\right) . \tag{75}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
f\left(\frac{1}{10}\right)=P_{3}\left(\frac{1}{10}\right)+\frac{5^{4} \sin (5 \xi+\pi / 4)}{24} \cdot\left(\frac{1}{10}\right)^{4} \tag{76}
\end{equation*}
$$

for some $\xi \in\left(0, \frac{1}{10}\right)$. Hence

$$
\begin{equation*}
\left|f\left(\frac{1}{10}\right)-P_{3}\left(\frac{1}{10}\right)\right|=\left|\frac{5^{K} \sin (5 \xi+\pi / 4)}{24 \cdot(\not, 5 \cdot 2)^{4}}\right| \leq \frac{1}{2^{4} \cdot 24}=\frac{1}{384}<\frac{1}{100} \tag{77}
\end{equation*}
$$

where we have made use of the fact that $|\sin u| \leq 1$ for all real u.

6.4 Part d

We obtain the third degree Taylor polynomial, $T_{3}(x)$, about $x=0$ for

$$
\begin{equation*}
G(x)=\int_{0}^{x} f(t) d t \tag{78}
\end{equation*}
$$

by integrating the second degree Taylor polynomial for f from 0 to x.

$$
\begin{align*}
T_{3}(x) & =\int_{0}^{x} P_{2}(\xi) d \xi \tag{79}\\
& =\int_{0}^{x}\left[\frac{\sqrt{2}}{2}+\frac{5 \sqrt{2}}{2} \xi-\frac{25 \sqrt{2}}{4} \xi^{2}\right] d \xi \tag{80}\\
& =\left.\left[\frac{\sqrt{2}}{2} \xi+\frac{5 \sqrt{2}}{4} \xi^{2}-\frac{25 \sqrt{2}}{12} \xi^{3}\right]\right|_{0} ^{x} \tag{81}\\
& =\frac{\sqrt{2}}{2} x+\frac{5 \sqrt{2}}{4} x^{2}-\frac{25 \sqrt{2}}{12} x^{3} . \tag{82}
\end{align*}
$$

