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1 Problem 1

1.1 Part a

The general acceleration vector a(t) at time t is given by

a(t) =
d

dt

〈
x′(t), y′(t)

〉
(1)

=
d

dt

〈
12t− 3t2, ln[1 + (t− 4)4]

〉
(2)

=

〈
12− 6t,

4(t− 4)3

1 + (t− 4)4

〉
. (3)

Thus,

a(2) =

〈
0,−32

17

〉
. (4)

Speed σ(t) at time t is given by

σ(t) =
√

v(t) · v(t) =
√
〈x′(t), y′(t)〉 · 〈x′(t), y′(t)〉 =

√
[x′(t)]2 + [y′(t)]2 (5)

=
√
(12t− 3t2)2 + (ln[1 + (t− 4)4])2, (6)

so that σ(2) =
√

144 + (ln 17)2 ∼ 12.32993.
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1.2 Part b

The y-coordinate of P , the object’s position when t = 2 is, by the Fundamental Theorem
of Calculus, given by

y(2) = 5 +

∫ 2

0
ln
[
1 + (t− 4)4

]
dt ∼ 13.67145, (7)

where it has been necessary to carry out the non-elementary integration numerically.

1.3 Part c

The tangent line at t = 2 is parallel to the vector 〈x′(2), y′(2)〉 = 〈12, ln 17〉, and thus has
slope 1

12 ln 17. An equation is thus

y =

[
5 +

∫ 2

0
ln
[
1 + (t− 4)4

]
dt

]
+

[
1

12
ln 17

]
(x− 3), (8)

or, approximately

y = 12.96315 + 0.23610x (9)

2 Problem 2

2.1 Part a

At time t = 15, water is entering the tank at the rate of

W (15) = 95
√
15 sin3

15

6
∼ 131.78231 gallons per hour, (10)

and is being removed from the tank at the rate of

R(15) = 275 sin2
15

3
∼ 252.87234 gallons per hour. (11)

When t = 15, the removal rate is larger than the supply rate, so the amount of water in
the tank is decreasing when t = 15.
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2.2 Part b

The amount, A(t), of water in the tank at time t s, by the Fundamental Theorem of Calcu-
lus,

A(t) = 1200 +

∫ t

0
[W (τ)−R(τ)] , dτ. (12)

Thus, integrating numerically, we find that

A(18) ∼ 1309.78818 gallons. (13)

So, to the nearest whole number, there are 1310 gallons of water in the tank at t = 18.

2.3 Part c

We seek the zeros of A′(t) = W (t) − R(t) in the interval (0, 18). Solving numerically, we
find that these are t ∼ 6.49484 and t ∼ 12.9748. Because A′(t) is defined for all t ∈ (0, 18),
we know that the absolute minimum value of A(t) for t ∈ [0, 18] must be one of the four
values A(0) = 1200, A(6.49484) ∼ 525.24215, A(12.97482) ∼ 1697.44124, and A(18) ∼
1309.78818. (We have used (12) to calculate all but the first of these four values, carrying
out the required integrations numerically.) Thus, the absolute minimum amount of water
in the tank during the time interval [0, 18] occurs when t ∼ 6.49484; that minimum value
is about 525.24215 gallons.

2.4 Part d

With A and R as defined above, we must solve for k in the equation

A(18)−
∫ k

18
R(τ) dτ = 0. (14)

Note: Solution of (14) is not required. For the curious, numerical techniques give k ∼
29.19242 for the solution.
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3 Problem 3

3.1 Part a

We have f ′(0) = 0, because the tangent line at x = 0 is given horizontal. From the formula
given for the derivatives, we have

f ′′(0) =
(−1)3 · 3!
52 · 12

= − 6

25
< 0. (15)

By the Second Derivative Test, f has a local maximum at x = 2.

3.2 Part b

The third degree Taylor polynomial, T3(x) at x = 0 is

T3(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

6
f ′′′(0)x3 (16)

= 6− 3

25
x2 +

1

125
x3. (17)

3.3 Part c

If an is the coefficient of xn in the Taylor series for f , then

an =
(−1)n+1(n+ 1)!

5n(n− 1)2 · n!
=

(−1)n+1(n+ 1)

5n(n− 1)2
. (18)

Thus

lim
n→∞

|an+1x
n+1|

|anxn|
=
|x|
5

lim
n→∞

[
(n− 1)2

(n+ 1)
· (n+ 2)

n2

]
(19)

=
|x|
5

lim
n→∞

(1− 1/n)2(1 + 2/n)

(1 + 1/n)
=
|x|
5
. (20)

We conclude, from the Ratio Test, that the series converges when |x| < 5 but diverges
when |x| > 5. The series therefore has radius of convergence 5.
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4 Problem 4

4.1 Part a

g(−1) =
∫ −1
−4 f(t) dt is the negative of the area of the trapezoid defined by the x-axis, the

vertical lines x = −4 and x = −1, and the line segment joining the points (−4,−3) and
(−1,−2). Thus,

g(−1) = −1

2
· (3 + 2) · 3 = −15

2
. (21)

By the Fundamental Theorem of Calculus, g′(x) = f(x), so g′(−1) = −2. It also follows
that g′′(x) = f ′(x), if, and only if, the latter exists. Because of the corner in the graph of
f(x) at the point corresponding to x = −1, f ′(−1) does not exist. (In fact, f ′−(−x) = 1/3,
while f ′+(−1) = 2.) Thus, g′′(−1) does not exist.

4.2 Part b

The inflection points of g occur where g′ = f has relative extrema. But f has just one
relative extremum in the interval (−4, 3), at x = 1—as is evident from the graph. Thus,
the only inflection point for g is to be found at x = 1.

4.3 Part c

If

h(x) =

∫ 3

x
f(t) dt = −

∫ x

3
f(t) dt. (22)

then the zeros of h are to be found at those values of x for which the graph of f over the
interval whose endpoints are 3 and x has just as much area above the horizontal coordi-
nate axis as below. These values are evidently x = −1 and x = 1. And, of course, we
shouldn’t forget the trivial solution x = 3.

4.4 Part d

With h as given in Part c, above, we have, by the Fundamental Theorem of Calculus,
h′(x) = −f(x). Therefore, h is decreasing on (the closures of) those intervals for which
−f(x) < 0, or, equivalently, where f(x) > 0. From the graph, it is thus evident that h is
decreasing on [0, 2].
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5 Problem 5

5.1 Part a

On the curve y2 = 2+ xy, we treat y as though it is (at least, near each point on the curve)
a function of x. Then, differentiating both sides with respect to x, we obtain

d

dx

[
y2
]
=

d

dx
[2 + xy] (23)

2y
dy

dx
= y + x

dy

dx
(24)

2y
dy

dx
− xdy

dx
= y (25)

dy

dx
=

y

2y − x
, (26)

at least as long as 2y − x 6= 0. But if 2y − x = 0, then x = 2y, and the equation y2 = 2+ xy
becomes y2 = 2+(2y)y, or y2 = −2, which is not possible for real values of y. We conclude

that (26) gives
dy

dx
at all points of the curve.

5.2 Part b

If
1

2
= y′ =

y

2y − x
, then (27)

2y − x = 2y, (28)

and x = 0. Substituting this in the original equation, we find that y2 = 2. The required
points are therefore (0,

√
2) and (0,−

√
2).

5.3 Part c

If the tangent line to the curve y2 = 2 + xy is horizontal at a point (x0, y0), we must
have

0 = y′(x0) =
y0

2y0 − x0
. (29)

As we have seen in Part a, above, if (x0, y0) is a point on the curve, then 2y0+x0 = 0 is not
possible, so (29) means that y0 = 0. But then 0 = y20 = 2 + x0y0 = 2 + 0 = 2, which means
that 0 = 2. The contradiction show that there can be no point on the curve y2 = 2 + xy
where the tangent line is horizontal.
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5.4 Part d

We differentiate the equation for the curve implicitly again, but this time we treat x and y
both as functions of a third variable t, and we take the prime to mean differentiation with
respect to t. We have

d

dt
y2 =

d

dt
[2 + xy] ; (30)

2y
dy

dy
= y

dx

dt
+ x

dy

dt
, (31)

or 2yy′ = yx′ + xy′. Putting y = 3, y′ = 6, in both the original equation and the derived
equation leads to the system of equations

9 = 2 + 3x (32)
36 = 3x′ + 6x. (33)

From the first of these two, we see that x = 7/3, and substituting this for x in the second
equation yields 36 = 3x′ + 14, whence x′ = 22/3.

6 Problem 6

6.1 Part a

The required area is ∫ k

0

dx

x+ 2
= ln(k + 2)− ln 2. (34)

6.2 Part b

The required volume is

π

∫ k

0

dx

(x+ 2)2
= − π

x+ 2

∣∣∣∣k
0

=
πk

2(k + 2)
. (35)
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6.3 Part c

The volume of the solid generated by S is given by the improper integral

π

∫ ∞
k

dx

(x+ 2)2
= π lim

T→∞

∫ T

k

dx

(x+ 2)2
(36)

= −π lim
T→∞

1

x+ 2

∣∣∣∣T
k

(37)

= −π lim
T→∞

[
1

T + 2
− 1

k + 2

]
=

π

k + 2
. (38)

This volume is equal to that of the solid of Part b, above, if and only if

πk

2(k + 2)
=

π

k + 2
, (39)

or k = 2. Thus, the only value of k for which the two volumes are the same is k = 2.
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