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1 Problem 1

1.1 Part a

The area of the region R is
∫ a
0

[
4−x − 1

4 − sinπx
]
dx, where a is the smallest positive solu-

tion of the equation

1 + 4 sinπx = 41−x. (1)

Numerical solution, and then a numerical integration, give

a ∼ 0.17823, and (2)∫ a

0

[
4−x − 1

4
− sinπx

]
dx ∼ 0.06475. (3)

1.2 Part b

The second smallest positive solution, b, of equation (1) is easily seen to be b = 1. The area
of the region S is therefore given by∫ 1

a

[
4−x − 1

4
− sinπx

]
dx ∼ 0.41036, (4)

where we have again carried out the integration numerically.
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1.3 Part c

The volume of the solid generated when S is revolved about the horizontal ine y = −1 is
(integrating numerically one more time)

π

∫ 1

a

[(
1

4
+ sinπx+ 1

)2

−
(
4−x + 1

)2]
dx ∼ 4.55876. (5)

2 Problem 2

2.1 Part a

The required area is

1

2

∫ π

0
[r(θ)]2 dθ =

1

2

∫ π

0
[θ + sin 2θ]2 dθ ∼ 4.38231 (6)

The integral is elementary but tedious, so we carried out the integration numerically. Ex-
act integration gives the value

π

12

(
2π2 − 3

)
.

2.2 Part b

If x = −2, then r cos θ = −2, or (θ + sin 2θ) cos θ = −2. Solving this equation numerically,
we find that θ ∼ 2.78696.

2.3 Part c

When r′(θ) < 0, r decreases as θ increases. This means that as θ ranges upward from π/3
to 2π/3, the corresponding point on the curve gets closer to the pole.

2.4 Part d

We seek to find the absolute maximum of r(θ) on the interval [0, π/2]. This will be found
at a point where θ = 0, where θ = π/2, or where r′(θ) = 0. Now r(0) = 0 and r(π/2) =
π/2 ∼ 1.57080. Also,

r′(θ) = 1 + 2 cos(2θ) = 0 (7)
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when θ = π/3. We have

r
(π
3

)
=

√
3

2
+
π

3
∼ 1.91322. (8)

We conclude that the maximum distance from the pole to the curve is about 1.91322, and
that it is to be found when θ =

√
3/2 + π/3 ∼ 1.91322.

3 Problem 3

3.1 Part a

T ′(7) ∼ T (8)− T (6)
8− 6

=
55− 62

8− 6
= −7

2
. (9)

3.2 Part b

The average temperature of the wire is

1

8

∫ 8

0
T (x) dx ∼ 1

8

[
100 + 93

2
+

93 + 70

2
(5− 1) +

70 + 62

2
+

62 + 55

2
(8− 6)

]
(10)

∼ 1211

16
degrees Celsius. (11)

3.3 Part c

We are given that T is twice differentiable—though we are not told where. We take the
statement to mean that T is twice differentiable, and, consequently that T ′ is continuous,
on a domain that includes [0, 8], so that the problem is meaningful. By the Fundamental
Theorem of Calculus,∫ 8

0
T ′(t) dt = T (8)− T (0) = −45 degrees Celsius. (12)

The integrand, T ′(x), is the (instantaneous) rate at which T (x) changes per unit length at
each point of the interval [0, 8], and the integral gives net temperature change over the
same interval.
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3.4 Part d

By hypothesis, T is continuous on [1, 5] and differentiable on (1, 5), so the Mean Value
Theorem guarantees that there is a point ξ ∈ (1, 5) such that

T ′(ξ) =
T (5)− T (1)

5− 1
= −23

4
. (13)

By the same reasoning, there is a point η ∈ (5, 6) for which

T ′(η) =
T (6)− T (5)

6− 5
= −8. (14)

We note that, necessarily, 0 < ξ < η < 8. We apply the Mean Value Theorem still a third
time, now on the interval [ξ, η], and we obtain ζ ∈ (ξ, η) such that

T ′′(ζ) =
T ′(ξ)− T ′(η)

ξ − η
=
−8 + (23/4)

ξ − η
=

−9
4(ξ − η)

< 0. (15)

Thus, the data in the table are not consistent with the assertion that T ′′(x) > 0 throughout
0, 8).

4 Problem 4

4.1 Part a

See Figure 1.

4.2 Part b

At a local minimum on a differentiable curve, we must have y′ = 0, and because we are
on a solution curve, we know that 0 = 2x− y = 2 ln(3/2)− y. Hence, the y-coordinate of
this minimum is y = ln(9/4).

4.3 Part c

The recursion for Euler’s method with step-size h = −0.2 to approximate the solution to
the problem

y′ = f(x, y) = 2x− y (16)
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Figure 1: Problem 4, Part a

given that y = 1 when x = 0 is

x0 = 0; (17)
y0 = 1; (18)
xk = xk−1 + h = xk−1 − 0.2; (19)
yk = yk−1 + hf(xk−1, yk−1) = yk−1 − 0.2(2xk−1 − yk−1) = 1.2yk−1 − 0.4xk−1. (20)

Thus

x1 = −0.2; (21)
y1 = 1.2(1)− 0.4(0) = 1.2; (22)
x2 = −0.4; (23)
y2 = 1.2(1.2)− 0.4(−0.2) = 1.52. (24)

We conclude that if y = f(x) is the solution in question, then f(−0.4) ∼ 1.52.

4.4 Part d

If y′ = 2x − y, then y′′ = 2 − y′ = 2 − (2x − y) = y − 2x + 2. This latter quantity is
positive when x ≤ 0 and y > 0—as they surely are for our solution. Hence the solution
must be concave upward in the region where we are examining it. Consequently, tangent
lines to the solution lie below the curve throughout the interval (−0.4, 0). Because Euler’s
Method proceeds by replacing the curve with tangent lines, the method underestimates y
in this region.
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Note: Let y = f(x) be the solution of Part a. Then f ′(x) = 2x− f(x), or

f ′(x) + f(x) = 2x, and (25)
f ′(x)ex + f(x)ex = 2xex. Thus, (26)

d

dx
[exf(x)] = 2xex. (27)

It now follows that [
eξf(ξ)

] ∣∣∣∣x
0

= 2

∫ x

0
ξeξ dξ = 2

[
ξeξ − eξ

] ∣∣∣∣x
0

; (28)

exf(x)− f(0) = (2xex − 2ex)− 2(0− 1); (29)
exf(x) = 2xex − 2ex + 3; (30)
f(x) = 2x− 2 + 3e−x, (31)

and the solution is f(x) = 2x− 2 + 3e−x.

5 Problem 5

5.1 Part a

∫ 24

0
v(t) dt =

1

2
(4− 0) · 20 + (16− 4) · 20 + 1

2
(34− 16) · 20 = 360 meters. (32)

The integral gives the distance, in meters, that the car travels during the time period 0 ≤
t ≤ 24.

5.2 Part b

The definition of v′(t0) is

v′(t0) = lim
h→9

v(t0 + h)− v(t0)
h

. (33)

For the piecewise linear function given,

lim
h→0−

v(4 + h)− v(4)
h

= 5, while (34)

lim
h→0+

v(4 + h)− v(4)
h

= 0. (35)
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These one-sided limits are distinct, so the two-sided limit, which would be v′(4), doesn’t
exist.

On the other hand, v′(20) = −5/2.

5.3 Part c

Acceleration, a(t), is given by

a(t) =


t when 0 < t < 4

0 when 4 < t < 16

−5

2
when 16 < t < 24.

(36)

5.4 Part d

The average rate of change of v over 8 ≤ t ≤ 20 is

v(20)− v(8)
20− 8

=
10− 20

20− 8
= −5

6
. (37)

The hypotheses of the Mean Value Theorem require that a function be differentiable at
every point of the interior of the interval on which we wish to apply the theorem, so we
may not apply the Mean Value Theorem to the function v on the interval [8, 20], because
v′(16) does not exist.

6 Problem 6

6.1 Part a

The degree-six Taylor polynomial , T6(x), about x = 2 for this function is

T6(x) =

6∑
k=0

f (k)(2)

k!
(x− 2)k (38)

= 7 +
1

18
(x− 2)2 +

1

324
(x− 2)4 +

1

4374
(x− 2)6. (39)
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6.2 Part b

The coefficient a2n of (x − 2)2n in the Taylor expansion of this function about x = 2 is
1

(2n) · 32n
.

6.3 Part c

We have

lim
n→∞

a2n+2|x− 2|2n+2

a2n|x− 2|2n
= lim

n→∞

(2n)32n|x− 2|2n+2

(2n+ 2)32n+2|x− 2|2n
(40)

=
|x− 2|2

9
lim
n→∞

n

n+ 1
(41)

=
|x− 2|2

9
lim
n→∞

1

1 + 1
n

=
|x− 2|2

9
, (42)

and this limit is less than one when −1 < x < 5. The Ratio Test tells us that the series
converges in the interval (−1, 5) and diverges in (−∞,−1) ∪ (5,∞). When x = −1, the
series becomes

7 +
∞∑
n=1

a2n(x− 2)2n = 7 +
∞∑
n=1

(−3)2n

(2n)32n
= 7 +

∑
n=1

1

2n
= 7 +

1

2

∞∑
n=1

1

n
, (43)

This is the divergent harmonic series.

An altogether similar calculation at x = 5 also produces the divergent harmonic series.
We conclude that the interval of convergence for this series is (−1, 5).
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