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1 Problem 1

1.1 Part a

The limits of the integral that gives the area are the solutions of the equation

2 =
20

1 + x2
; (1)

2 + 2x2 = 20; (2)

x2 = 9, (3)

or x = ±3. The required area is therefore∫ 3

−3

[
20

1 + x2
− 2

]
dx = [20 arctanx+ 2x]

∣∣∣∣3
−3

(4)

= [20 arctan 3− 6]− [20 arctan(−3)− (−6)] (5)
= 40 arctan 3− 12. (6)

1.2 Part b

Using the method of washers, we find that the required volume is

π

∫ 3

−3

[(
20

1 + x2

)2

− 4

]
dx ∼ 1871.19010, (7)

where we have carried out the integration numerically.
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Note: The integral is elementary, and can be done with a trigonometric substitution, but
numerical integration saves time. For the curious, we find that∫

dx

(1 + x2)2
=

1

2

(
arctanx+

x

1 + x2

)
, (8)

and the exact value of this volume turns out to be π(96 + 400 arctan 3).

1.3 Part c

The diameter of the semicircle at x = t is 20
1+t2
− 2, so the radius is 10

1+t2
− 1. Hence the area

A(t) of the cross section at x = t is

A(t) =
π

2

(
10

1 + t2
− 1

)2

. (9)

The required volume is therefore

π

2

∫ 3

−3

(
10

1 + t2
− 1

)2

dt ∼ 174.26846, (10)

where we have again integrated numerically to save time. We find that he exact volume
is π

2 (36 + 60 arctan 3).

2 Problem 2

2.1 Part a

The amount of water that enters the tank during the time interval 0 ≤ t ≤ 7 is∫ 7

0
f(t) dt =

∫ 7

0
100t2 sin

√
t dt. (11)

Numerical integration gives
∫ 7
0 f(t) dt ∼ 8263.80654, or, to the nearest gallon, 8264 gal-

lons.

Note: The integration is elementary, but requires repeated integration by parts, and so
consumes an unpleasant amount of time.
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2.2 Part b

From the graph and what we are given about the intersection points of the curves, we
see that the rate at which water leaves the tank exceeds that at which it leaves the tank
on the intervals [0, 1.617) and (3, 5.076). It follows that the amount of water in the tank is
decreasing on each of the intervals [0, 1.617] and [3.076].

Note: We include the endpoints because a continuous function that is decreasing on any
interval must be decreasing on the closure of that interval. In the past, the readers have
not paid any attention to this subtlety.

2.3 Part c

The rate at which the amount of water in the tank increases is, as we have seen in Part
b, above, negative on (3, 5.076), positive on (1.617, 3). By the First Derivative Test, the
amount of water in the tank has a local maximum at t = 3. By similar reasoning, we see
that the critical point at t = 1.627 gives a local minimum, and we can therefore exclude
that value of t from our search for an absolute maximum.

We must also consider the amount of water in the tank when t = 0, which is given as 5000
gallons, and when t = 7. Over the interval [0, 7],

3× 250 + 4× 2000 = 8750 gallons (12)

have left the tank, while about 8263.806 gallons have entered the tank (see Part a, above).
Thus, at time t = 7 there are about

5000 + 8263.806− 8750 = 4513.806 gallons (13)

in the tank. The amount of water in the tank when t = 3 is

5000 +

∫ 3

0

[
100t2 sin

√
t− 250

]
dt ∼ 5126.59080 gallons. (14)

We see now that the absolute maximum occurs at t = 3 and is, to the nearest gallon,
5127 gallons.
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3 Problem 3

3.1 Part a

The required area is

1

2

∫ 2π/3

−2π/3
r2 dθ +

1

2

∫ 4π/3

2π/3
r2 dθ = 2

∫ 2π/3

−2π/3
dθ +

1

2

∫ 4π/3

2π/3
(3 + 2 cos θ)2 dθ. (15)

The first of these latter two integrals is easily seen to have the value 8π/3. Integrating
numerically, we find that the value of the other integral is about 1.99289. Consequently,
the required area is about 10.37047.

Note: The second integration is elementary but tedious. Numerical integration saves

time. The exact area is, in fact,
1

6
(38π − 33

√
3).

3.2 Part b

r(θ) = 3 + 2 cos θ, so r′(θ) = −2 sin θ. Thus, when θ = π/3,

dr

dt
=
dr

dθ
= −
√
3. (16)

This means that the particle traces out the curve in such a way that when it moves through
the point whose polar coordinates are r = 4, θ = π/3, the radial component of its velocity
vector points toward the origin and has magnitude

√
3.

3.3 Part c

We have y(θ) = r(θ) sin θ = (3 + 2 cos θ) sin θ, so

y′(θ) = cos θ(3 + 2 cos θ)− 2 sin2 θ, and (17)

y′(π/3) =
1

2
. (18)

Thus, at the instant when θ = π/3, the vertical component of the particle’s veloctiy vector
points upward and has magnitude 1/2.
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4 Problem 4

4.1 Part a

If f(e) = 2 and f ′(x) = x2 lnx, then f ′(e) = e2 ln e = e2.

4.2 Part b

Because f ′(x) = x2 lnx, then f ′(x) = x(2 lnx + 1). When x > 1, lnx > 0, so f ′′(x) > 0 on
(1, 3). Thus, the graph of the curve y = f(x) is concave upward on (1, 3).

4.3 Part c

We let u = lnx, dv = x2 dx. Then du = dx/x, and we may take v = x3/3. Then there is a
constant c such that∫

x2 lnx dx =
1

3
x3 lnx− 1

3

∫
x2 dx =

1

3
x3 lnx− 1

9
x3 + c. (19)

But f(e) = 2, so

2 =
1

3
e3 ln e− 1

9
e3 + c =

2

9
e3 + c, (20)

and c = 2− 2

9
e3. Thus,

f(x) =
1

3
x3 lnx− 1

9
x3 + 2− 2

9
e3. (21)

5 Problem 5

5.1 Part a

The linearization (i.e. the tangent line approximation) of r at t = 5 is the linear func-
tion

L(x) = f(5) + r′(5)(t− 5) = 30 + 2(t− 5). (22)

Thus, an approximate value for r(5.4) is

L(5.4) = 30 + 2(5.4− 5) = 30.8 feet. (23)
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The curve r = r(t) is given to be concave downward on the interval (0, 12), so the tan-
gent line at each point in that interval lies on or above the curve. This means that the
linearization estimate is an overestimate.

5.2 Part b

Because

V (t) =
4

3
π[r(t)]3, we have (24)

V ′(t) = 4π[r(t)]2r′(t). Thus (25)

V ′(5) = 4π · 302 · 2 ∼ 22, 619.46711 ft3/min. (26)

5.3 Part c

The right Riemann sum corresponding to the data given is

4.0(2− 0) + 2.0(5− 2) + 1.2(7− 5) + 0.6(11− 7) + 0.5(12− 11) = 19.3 feet. (27)

By the Fundamental Theorem of Calculus, the integral∫ 12

0
r′(t) dt = r(12)− r(0) (28)

gives the change, in feet, in the radius from its value at t = 0 to its value at t = 12.

5.4 Part d

The function r is given concave down, so r′ is a non-increasing function. Consequently,
r′(t) ≥ r′(b) when t lies anywhere in an interval [a, b]. It follows that each term of a right
Riemann sum is at most the area under the curve in the corresponding interval. The right
Riemann sum therefore underestimates the integral.
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6 Problem 6

6.1 Part a

In general

eu = 1 + u+
u2

2!
+
u3

3!
+ · · ·+ u2

n!
+ · · · . (29)

Thus,

e−x
2
= 1− x2 + x4

2!
− x6

3!
+ · · ·+ (−1)nx

2n

n!
+ · · · . (30)

6.2 Part b

We have

lim
x→0

1− x2 − f(x)
x4

= lim
x→0

1− x2 −
(
1− x2 + x4

2! −
x6

3! + · · ·
)

x4
(31)

= lim
x→0

(
− 1

2!
+
x2

3!
− x4

4!
+ · · ·

)
= −1

2
. (32)

6.3 Part c

Integrating the series from (30) term by term, we obtain∫ x

0
e−t

2
dt = x− x3

3
+

x5

5 · 2!
− x7

7 · 3!
+ · · ·+ (−1)n x2n+1

(2n+ 1)n!
+ · · · (33)

Substituting x = 1/2 into the first two terms of this series, we obtain the approxima-
tion ∫ 1/2

0
e−t

2
dt ∼ 1

2
− 1

24
=

11

24
. (34)

6.4 Part d

As n → ∞, the n-th term of the series (33) decreases to zero and the terms alternate in
sign when x = 1/2. Thus, the Alternating Series Test guarantees that the magnitude of
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the error in our approximation doesn’t exceed the magnitude of the first of all the terms
we omitted. The bound on the error in that approximation is therefore

(1/2)5

5 · 2!
=

1

320
<

1

200
. (35)
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