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1 Problem 1

1.1 Part a

Acceleration is the time derivative of velocity, and velocity is given as 〈
√
3t , 3 cos t

2

2 〉.
Thus, acceleration is

d

dt

〈√
3t , 3 cos

t2

2

〉
=

〈
1

2

√
3

t
,−3t sin t

2

2

〉
. (1)

When t = 4, acceleration is

〈√
3

4
,−12 sin 8

〉
.

1.2 Part b

By the Fundamental Theorem of Calculus, y(0), the y-coordinate of position at time t = 0,
satisfies

y(4)− y(0) =
∫ 4

0
y′(τ) dτ. (2)

From what we have been given, we conclude that

y(0) = 5− 3

∫ 4

0
cos

τ2

2
dτ (3)

∼ 1.60060, (4)

where we have carried out the integration numerically.
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1.3 Part c

Speed is the magnitude of velocity, or

√
[x′(t)]2 + [y′(t)]2 =

√
3t+ 9 cos2

t2

2
. (5)

A calculator plot shows that the first time that speed reaches 3.5 is just larger than t = 2.
Numerical solution gives t ∼ 2.22558.

1.4 Part d

To find total distance, we integrate speed, which must be done numerically. We have∫ 4

0

√
3τ + 9 cos2

τ2

2
dτ ∼ 13.18242. (6)

2 Problem 2

2.1 Part a

We integrate speed, the magnitude of velocity, to obtain distance traveled. (The problem
gives speed, but the given speed is never zero, and this guarantees that travel is unidirec-
tional. We take the direction of travel to be the positive direction.) The required distance
is

x(2) =

∫ 2

0
120

(
1− e−10t2

)
dt ∼ 206.37005 kilometers. (7)

Note that the integral must be evaluated numerically, which we have done.

2.2 Part b

We have g(x) = 0.05x
(
1− e−x/2

)
. We must find the value of

d

dt
g[x(t)] = g′[x(t)]x′(t) (8)
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when t = 2. But

g′(x) =
d

dx

[
0.05x

(
1− e−x/2

)]
(9)

= 0.05
(
1− e−x/2

)
+ 0.025xe−x/2, while it is given that (10)

x′(t) = r(t) = 120(1− e−10t2). (11)

We have x(2) from equation (7), while x′(2) = r(2) = 120(1− e−40). Thus,

d

dt
g[x(t)]

∣∣∣∣
t=2

=
[
6
(
1− e−x(2)/2

)
+ 3x(2)e−x(2)/2

]
(1− e−40) (12)

∼ 6.00000 (13)

The rate of change, taken with respect to time, of the number of liters of gasoline used by
the car when t = 2 hours is approximately 6.00000 liters/hour.

2.3 Part c

We begin by solving the equation 120(1 − e−10t
2
) = 80 for t. It is easy to see that the

following are equivalent:

120(1− e−10t2) = 80; (14)

1− e−10t2 =
2

3
; (15)

e10t
2
= 3; (16)

10t2 = ln 3; (17)

t2 =
ln 3

10
. (18)

The only positive solution is

t =

√
ln 3

10
∼ 0.33145. (19)

Thus, speed reaches 80 km/hr when t ∼ 0.33145 hours. At that time, position is given
by

x
[√

ln(3)/10
]
∼ 120

∫ ln(3)/
√
10

0

(
1− e−10τ2

)
dτ ∼ 10.79410. (20)

We carry out the required integration numerically again, and we find that the amount of
fuel, in liters, consumed up to that time is

g
(
x
[√

ln(3)/10
])
∼ 0.53726. (21)
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3 Problem 3

3.1 Part a

The trapezoidal sum that approximates the area of the river cross section is

1

2
[(0 + 7) · 8 + (7 + 8) · 6 + (8 + 2) · 8 + (2 + 0) · 2] = 115 (22)

The area of the river cross section is about 115 square feet.

3.2 Part b

We integrate area times volumetric flow, with respect to time. Then we divide the result
by the length of the time interval to obtain the average volumetric flow.

115

120

∫ 120

0

(
16 + 2 sin

√
t+ 10

)
dt ∼ 1807.16972 ft3/min. (23)

The integration is elementary, but numerical integration is faster, and that is the technique
we have used.

3.3 Part c

Once again, we integrate depth from 0 to 24:∫ 24

0
8 sin

πx

24
dx = −192

π
cos

πx

24

∣∣∣∣24
0

= −192

π
cosπ +

192

π
cos 0 =

384

π
. (24)

Based on this model, the area of the cross section is 384/π ∼ 122.23100 square feet.

3.4 Part d

We must again integrate area times volumetric flow, this time using the area found in
Part c, above, and with t varying from 40 to 60. We integrate numerically again, and we
obtain

384

π
· 1
20

∫ 60

40

(
16 + 2 sin

√
t+ 10

)
dt ∼ 2181.91265. (25)

The average volumetric flow during the interval 40 ≤ t ≤ 60 is about 2181.91265 cubic
feet per minute. This value exceeds the given safety limit of 2100 cubic feet per minute
and indicates that water must be diverted.
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4 Problem 4

4.1 Part a

By the Fundamental Theorem of Calculus and the Chain Rule, from

f(x) =

∫ 3x

0

√
4 + t2 dt, (26)

we see that

f ′(x) =
d

dx

[∫ 3x

0

√
4 + t2 dt

]
(27)

=
√

4 + 9x2 · d
dx

(3x) = 3
√
4 + 9x2. (28)

Then from g(x) = f(sinx) it follows from what we have seen above and, again, the Chain
Rule that

g′(x) = f ′(x) cosx (29)

= 3 cosx
√
4 + 9 sin2 x. (30)

4.2 Part b

The slope of the tangent line to y = g(x) at x = π is

g′(π) = 3 cosπ
√
4 + 9 sin2 π = −6 (31)

An equation for the tangent line to the curve y = g(x) at the point corresponding to x = π
is therefore

y = g(π) + g′(π)(π) = 0− 6(x− π), or (32)
y = 6(π − x). (33)

4.3 Part c

When x > 0, the value f(x) is the integral of a positive quantity over an interval [0, 3x],
and from this it follows that f is an increasing function throughout the interval [0,∞). But
the sine function carries the interval [0, π] onto the interval [0, 1], and the maximum value
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of f(x) on this interval is f(1) = f [sin(π/2)]. Therefore, the maximal value of g(x) on [0, π]
is

g(π/2) = f [sin(π/2)] =

∫ 3

0

√
4 + t2 dt. (34)

Note: Evaluation of the integral is not required. However, a trig substitution followed by
an integration by parts gives∫ 3

0

√
4 + t2 dt =

[
1

2
t
√
4 + t2 + 2 ln

∣∣∣∣12 (t+√4 + t2
)∣∣∣∣] ∣∣∣∣3

0

(35)

=
3

2

√
13 + 2 ln

3 +
√
13

2
. (36)

5 Problem 5

5.1 Part a

Inflections points for g occur at local extrema of g′. There are two such on the given graph:
One at x = 1, and one at x = 4.

5.2 Part b

From the picture, we see that g′(x) < 0 throughout the intervals [−3,−1) and (2, 6). Con-
sequently, g is decreasing on the intervals [−3,−1] and [2, 6], and g is increasing on the
intervals [−1, 2] and [6, 7]. [Note: A function that is continuous on an interval [a, b] and
increasing on (a, b) must necessarily be increasing on [a, b].] It follows that the absolute
maximum value of (x) must lie either at x = 2, which is the boundary between an inter-
val where g increases to an interval where g decreases, or at one of the endpoints of the
interval [−3, 7].

We are given g(2) = 5. Making repeated use of the fact that the area of a triangle is one-
half its altitude times its base, and that the Fundamental Theorem of Calculus guarantees
us that g(x) =

∫ x
2 g
′(ξ) dξ, we find that

g(−3) = 5−
(
3

2
− 4

)
=

15

2
and (37)

g(7) = 5− 4 +
1

2
=

3

2
. (38)

We now see that g(−3) = 15/2 gives the absolute maximum value for g(x) when −3 ≤
x ≤ 7.
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5.3 Part c

The average rate of change of g(x) on the interval [−3, 7] is

g(7)− g(−3)
7− (−3)

=
3/2− 15/2

7 + 3
= −3

5
, (39)

where we have used the values of g(−3) and g(7) that we computed in Part b, above.

5.4 Part d

The average rate of change of g′(x) on the interval [−3, 7] is

g′(7)− g′(−3)
7− (−3)

=
1− (−4)
7− (−3)

=
1

2
, (40)

were we have read g′(−3) = −4 and g′(7) = 1 from the given graph.

The Mean Value Theorem does not apply to the function g′ on the interval [−3, 7], because
the hypotheses of that theorem require that g′′(x) exist for all values of x that lie in (−3, 7).
However, g′′(1) and g′′(4) do not exist for this function. (This can be seen by considering
the left and right derivatives of g′ at the points in question.)

6 Problem 6

6.1 Part a

Using the geometric series to expand (1 + x2)−1 in powers of x, we find that

2x

1 + x2
= 2x

(
1

1 + x2

)
(41)

= 2x
(
1− x2 + x4 − x6 + · · ·+ (−1)kx2k + · · ·

)
, or (42)

2x

1 + x2
= 2x− 2x3 + 2x5 − 2x7 + · · · =

∞∑
k=0

2(−1)kx2k+1 (43)

throughout the interval where x2 < 1.
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6.2 Part b

The series diverges when x = 1 because

lim
k→0

[
2(−1)kx2k+1

]
6= 0. (44)

(In fact, the limit doesn’t even exist.)

6.3 Part c

We have ∫ x

0

2t

1 + t2
= ln(1 + x2). (45)

Because

2t

1 + t2
= 2t− 2t3 + 2t5 − 2t7 + · · · (46)

when |x| < 1, it follows that

ln(1 + x2) =

∫ x

0

(
2t− 2t3 + 2t5 − 2t7 + · · ·

)
dt (47)

=

∫ x

0
2t dt−

∫ x

0
2t3 dt+

∫ x

0
2t5 dt−

∫ x

0
2t7 dt+ · · · (48)

= x2 − 1

2
x4 +

1

3
x6 − 1

4
x8 + · · ·+ (−1)k

k + 1
x2k+2 + · · · (49)

=
∞∑
k=0

(−1)k

k + 1
x2k+2 (50)

when |x| < 1.

6.4 Part d

From Part c of this problem, we know that

ln
5

4
= ln

[
1 +

(
1

2

)2
]

(51)

=

(
1

2

)2

− 1

2

(
1

2

)4

+
1

3

(
1

2

)6

− 1

4

(
1

2

)8

+ · · · (52)
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The terms of this series are clearly decreasing in magnitude, and have limit zero, so the Al-
ternating Series Test guarantees that the magnitude of the error introduced by truncating
the series is at most the magnitude of the first discarded term. But

1

3

(
1

2

)6

=
1

2 · 64
=

1

192
<

1

100
, (53)

so the desired rational number is given by

A =

(
1

2

)2

− 1

2

(
1

2

)4

=
1

4
− 1

32
=

7

32
. (54)

9


