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1 Problem1

1.1 Parta

Acceleration is the time derivative of velocity, and velocity is given as (v/3t,3cos %>

Thus, acceleration is
d t2 1 /3 t2
dt<\/3t,3COS2>:<2 t,3t81n2> (1)

When t = 4, acceleration is <\f, —12sin 8> .

1.2 Partb

By the Fundamental Theorem of Calculus, y(0), the y-coordinate of position at time ¢ = 0,
satisfies

4
v =90 = [ @
From what we have been given, we conclude that
4 2
y(O):53/ cos — dr 3)
0 2
~ 1.60060, 4)

where we have carried out the integration numerically.
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1.3 Partc

Speed is the magnitude of velocity, or

VPP = P = |3t + 90052 . ®

A calculator plot shows that the first time that speed reaches 3.5 is just larger than ¢ = 2.
Numerical solution gives ¢ ~ 2.22558.

14 Partd

To find total distance, we integrate speed, which must be done numerically. We have

4 7-2
/ 37+ 9cos? - dr ~ 13.18242, (6)
0

2 Problem 2

21 Parta
We integrate speed, the magnitude of velocity, to obtain distance traveled. (The problem
gives speed, but the given speed is never zero, and this guarantees that travel is unidirec-

tional. We take the direction of travel to be the positive direction.) The required distance
is

2
(2) = / 120 (1= 71"} dt ~ 206.37005 kilometers. @)
0

Note that the integral must be evaluated numerically, which we have done.

2.2 Partb

We have g(z) = 0.05z (1 — e~*/2). We must find the value of

@ glat) = o le(t))' (1) ®



when ¢ = 2. But

d
/ _“ __—x/2
g(z)= o [0.051: (1 e )] )
= 0.05 (1 — e—x/2) + 0.025z¢~*/2, while it is given that (10)
2/ (t) = r(t) = 120(1 — e~ 10%). (11)
We have z(2) from equation (7), while 2/(2) = r(2) = 120(1 — e~%°). Thus,
d
el _ __—x(2)/2 —x(2)/2 _ ,—40
70l 6(1-c ) +32(2)e @] (1 - 1) (12)
~ 6.00000 (13)

The rate of change, taken with respect to time, of the number of liters of gasoline used by
the car when ¢ = 2 hours is approximately 6.00000 liters/hour.

23 Partc
We begin by solving the equation 120(1 — e~10%) — 80 for t. Itis easy to see that the
following are equivalent:
120(1 — e~ 19%%) = 80; (14)
1-— eilot2 = ;; (15)
10 — 3; (16)
10t> = In 3; (17)
t? = %3 (18)
The only positive solution is
t= 1%3 ~ 0.33145. (19)

Thus, speed reaches 80 km/hr when ¢ ~ 0.33145 hours. At that time, position is given
by

In(3)/7/I0
@ [ In(3) /10] ~ 120 / (1 - e—1072> dr ~ 10.79410. (20)
0

We carry out the required integration numerically again, and we find that the amount of
fuel, in liters, consumed up to that time is

g (w { n(3) /10}) ~ 0.53726. 1)
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3 Problem 3

3.1 Parta

The trapezoidal sum that approximates the area of the river cross section is
1
2
The area of the river cross section is about 115 square feet.

[(0+7) 8+ (7T+8) 6+ (8+2)-8+(2+0)-2] =115 (22)

3.2 Partb

We integrate area times volumetric flow, with respect to time. Then we divide the result
by the length of the time interval to obtain the average volumetric flow.

115 120

20 (16 + 2sin vVt + 10) dt ~ 1807.16972 ft’ /min. (23)
0

The integration is elementary, but numerical integration is faster, and that is the technique
we have used.

3.3 Partc

Once again, we integrate depth from 0 to 24:

2y 192wz |* 192 192 384
8sin — dr = ——— cos — =——cosm+ —cos0)=—.
0 ™

24
T 240 T (24)

Based on this model, the area of the cross section is 384/m ~ 122.23100 square feet.

3.4 Partd

We must again integrate area times volumetric flow, this time using the area found in
Part ¢, above, and with ¢ varying from 40 to 60. We integrate numerically again, and we
obtain
341 (%
™ 20 40
The average volumetric flow during the interval 40 < ¢ < 60 is about 2181.91265 cubic

feet per minute. This value exceeds the given safety limit of 2100 cubic feet per minute
and indicates that water must be diverted.

(16 + 2sin vt + 10) dt ~ 2181.91265. (25)



4 Problem 4

41 Parta

By the Fundamental Theorem of Calculus and the Chain Rule, from

flz) = " V4 +t2de, (26)

0

we see that

d 3x
() [0 \/4+t2dt] 27)

:dx

:\/4+9x2~dd

X

(3x) = 34 + 922, (28)

Then from ¢g(z) = f(sinz) it follows from what we have seen above and, again, the Chain
Rule that

g'(z) = f'(z) cosz (29)

= 3coszV 4+ 9sin’ . (30)

4.2 Partb

The slope of the tangent line to y = g(z) at x = 7 is

g (m) =3cosmV4+9sin’7 = —6 (31)

An equation for the tangent line to the curve y = g(z) at the point corresponding to z = 7
is therefore

y=g(m)+g'(m)(m) =0—6(x —m), or (32)
y =6(m —x). (33)
4.3 Partc
When z > 0, the value f(x) is the integral of a positive quantity over an interval [0, 3z],

and from this it follows that f is an increasing function throughout the interval [0, c0). But
the sine function carries the interval [0, 7] onto the interval [0, 1], and the maximum value
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of f(x) on this intervalis f(1) = f[sin(7/2)]. Therefore, the maximal value of g(x) on [0, 7]
is

3
g(m/2) = f[sin(7/2)] = /0 VA4 +t2dt. (34)

Note: Evaluation of the integral is not required. However, a trig substitution followed by
an integration by parts gives

Ag¢2+ﬁﬁ::Bmﬂuw%+mn;(n+¢2+ﬁ)}Z (35)
:;13+2m3+;q? (36)
5 Problem 5
5.1 Parta

Inflections points for g occur at local extrema of ¢'. There are two such on the given graph:
One at z = 1, and one at z = 4.

5.2 Partb

From the picture, we see that ¢’(z) < 0 throughout the intervals [-3, —1) and (2, 6). Con-
sequently, g is decreasing on the intervals [-3, —1] and [2, 6], and ¢ is increasing on the
intervals [—1,2] and [6,7]. [Note: A function that is continuous on an interval [a, b] and
increasing on (a, b) must necessarily be increasing on [a, b].] It follows that the absolute
maximum value of (z) must lie either at = 2, which is the boundary between an inter-
val where g increases to an interval where g decreases, or at one of the endpoints of the
interval [—3,7].

We are given ¢(2) = 5. Making repeated use of the fact that the area of a triangle is one-
half its altitude times its base, and that the Fundamental Theorem of Calculus guarantees
us that g(z) = [} ¢'(§) d¢, we find that

g(—3)=5— <§ - 4> = % and (37)
gT) =5—4+2=3 (38)

2 2
We now see that g(—3) = 15/2 gives the absolute maximum value for g(z) when —3 <
z<T.



5.3 Partc

The average rate of change of g(z) on the interval [—3, 7] is

o(1)—g(=3) _3/2-15/2 _ 3

7—(=3) 7+3 5 39)
where we have used the values of g(—3) and ¢(7) that we computed in Part b, above.
5.4 Partd
The average rate of change of ¢'(z) on the interval [—3, 7] is
g(M)—g'(=3) 1-(=4) 1
= = — 4
T-(=3) 71-(=3) 2 40

were we have read ¢'(—3) = —4 and ¢/(7) = 1 from the given graph.

The Mean Value Theorem does not apply to the function ¢’ on the interval [—3, 7], because
the hypotheses of that theorem require that ¢”(z) exist for all values of x that lie in (-3, 7).
However, ¢”(1) and ¢”(4) do not exist for this function. (This can be seen by considering
the left and right derivatives of ¢’ at the points in question.)

6 Problem 6

6.1 Parta

Using the geometric series to expand (1 + #2)~! in powers of z, we find that

2z 1
=2 41
1+ 22 x<1+ar2> 41
:2x(1—x2+$4—x6+~--+(—1)kx2k+~--),or (42)
2 9r90% 4 2a® 2T ---—EOO 2(—1)ka 21 43
1+x2—x—x+m—x+ —k_o— x )

throughout the interval where 22 < 1.



6.2 Partb

The series diverges when = = 1 because

lim 2(—1)%%“] £ 0.
k—0

(In fact, the limit doesn’t even exist.)

6.3 Partc
We have
/033 1—2|—tt? =In(1 +a;2).
Because
1_2:t2 =2t — 23 +2t° — 2" + -

when |z| < 1, it follows that

X
1n(1+<ﬁ2)=/ (2t —2t3 +2t° —2tT ... ) at
0

xr x x x
:/ 2tdt/ 2t3dt+/ 2t5dt/ 2" dt + - - -
0 0 0 0

1 1 1 —1)k
2 4 ,6_,$8+...+u$2k+2+...

2 3 4 k+1

when |z| < 1.

6.4 Partd

From Part c of this problem, we know that
1\2
1+(2>]
:(1)2_1(1>4+1(1)6_1<1>8+...
2 2\ 2 3\ 2 4\ 2

ln§:ln
4

(44)

(45)

(46)

(47)
(48)
(49)

(50)

(51)

(52)



The terms of this series are clearly decreasing in magnitude, and have limit zero, so the Al-
ternating Series Test guarantees that the magnitude of the error introduced by truncating
the series is at most the magnitude of the first discarded term. But

1/1\° 1 1 1
3<2) =361 192 100 (53)
so the desired rational number is given by
1\> 1/1\* 1 1
A (LY 2Lty i1 _ 7 (54)
2 2\2 4 32 32



