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1 Problem1

1.1 Parta

The area of the region R is

/02 [sinma — (23 — 42)] dx = [_1 CoS L — (1;34 _ 2$2>]
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_ [%—(4—8)] - [%—0] — 4,

1.2 Partb

)

)

We must first find solutions, in the interval [0, 2], of the equation 3 — 4z = —2 to find
the limits of integration. We do this numerically, and find that the solutions we need are

x1 ~ 1.67513 and x2 ~ 0.53919.

The areas of that part of the region R which lies below the horizontal line y = —2 is given

by the integral/ 1 [-2 — (2* — 42)] da.
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1.3 Partc

The area, A(t), of a cross section of the solid perpendicular to the z-axis at x = ¢ is given
by
A(t) = [sinmt — (82 — 4t)]°. 3)

Thus, the volume of the solid is
2
/ [sinwt — (£ — 4¢)]” dt ~ 9.97834, 4)
0

where we have evaluated the integral numerically because, although the integral is ele-
mentary, the calculation is lengthy and requires integration by parts.

1129 24
Note: Th t value of the int lis — — —.
ote: The exact value of the integral is - — —3

1.4 Partd

Under the conditions given, the pool is a region in three-dimensional space whose base
is R and whose cross section perpendicular to the z-axis at + = t has area A(t) given

by
A(t) = [sinmt — (£ — 4¢)] (3 —1). (5)

The required volume is thus
2
/[mmﬁ%ﬁ—ﬁﬂ@—ﬂﬁw&%%& (6)
0

Where we have again integrated numerically to avoid a tedious calculation requiring in-
tegration by parts.

116 2
Note: The exact value of the integral is 15 + —.
™

2 Problem?2

2.1 Parta

At 5:30 pm, the rate at which the number of people standing in line was changing was
approximately
L(7) — L(4) _ 150 — 126
T—-4 0 T-4

= 8 people per hour. (7)
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2.2 Partb

The average number of people standing in line during the first four hours that tickets
were on sale was

1 4 1 [120 + 156 156 + 176 176 + 126
— ~ (1 - —B-1D+—4-
10 OL(t)dt 4[ 5 (1-0)+ 5 3-1)+ 5 (4-—3) 8)
L0 155.25. )
4
2.3 Partc

The function L is given twice differentiable on [0,9]. It is therefore continuous on [a, b]
and differentiable on (a,b) when [a, b] is any subinterval of [0,9], and we may apply the
Mean Value Theorem to L on any such interval. There must be points, then, &; € (1,3)
and & € (3,4), such that

L(3)— L(1) 176 — 156

L'(&) = ST1  C 3.1 > 0, and (10)
ey — L(4i::1));(3) _ 126;176 0 an

But L” exists throughout [0, 9], so L’ is a continuous function on [¢1,&2]. By the Interme-
diate Value Theorem for continuous functions, there must be a number 7; € (&1, &2) such
that L'(11) = 0. By similar reasoning there must &3 € (4,7) for which L'(£3) > 0, and so
N2 € (&2,&3) where L'(n2) = 0. Further, there must be & € (7,8) for which L'(§4) < 0, and
this guarantees 73 € (£3, &) for which L'(n3) = 0.

We conclude that L'(t) takes on the value 0 at least three times in the interval (0, 9).

Note: We can make this argument even if L is given merely differentiable instead of
twice differentiable, although we can no longer depend on the continuity of L. How-
ever, derivatives necessarily have the Intermediate Value Property in spite of the fact that
they may fail to be continuous’. To see that this is so, suppose that f is differentiable on
an interval (a,b) and let a < o < 3 < b. Suppose that f'(«) < A < f'(B). We let F be the
function defined on [«, 3] by

F(z) = f(z) — Az, whence (12)
Fl(z) = f'(z) = A (13)

This fact is not ordinarily a part of elementary calculus, and it is to be presumed that examinees who
want to use it must state it explicitly.



Now F is continuous on [«, 8], and so must have an absolute minimum on that interval—
which must occur at either an endpoint or a critical point. But F'(«) can’t be a minimum
because F'(a) = f'(a) — A < 0. Similarly, we deduce that F(§) can’t be a minimum
because F'(3) > 0. It follows that there must be a critical number zy € (o, 3)—that is, a
number z for which F’(z9) = 0. But F’(z¢) = 0 is equivalent to f/(x¢) = \.e

24 Partd

If T'(t) denotes the number of tickets that have been sold by time ¢, we are given that
T(0) = 0 and T'(t) = 550te~*/2. By the Fundamental Theorem of Calculus,

T(t) = T(0) + /0 t T'(1) dr = 550 /0 t re 2 dr (14)

The integral is elementary, but requires integration by parts, so we integrate numerically
to learn that 7°(3) ~ 972.78412. Thus, 973 tickets have been sold by 3:00 pm.

3 Problem 3

3.1 Parta

The first-degree Taylor polynomial, T} (z), for h about z = 2 is
Ti(z) = h(2) + h'(2)(z — 2) = 80 + 128(z — 2). (15)

Putting = 1.9, we obtain 77(1.9) = 67.2. Thus, our estimated value for h(1.9) is 67.2.
Because h”(1) = 42 and we are given that h”(x) is increasing on the interval [1, 3], we
know that A”(z) > 0 on [1,3]. From this, we may infer that the graph of & is concave
upward throughout this interval. Consequently, the graph of the Taylor polynomial of
degree one at x = 2, which is the graph of the tangent line at x = 2, lies below the curve
in [1, 3]. Thus, our estimate of 67.2 for h(1.9) is less than A(1.9).

3.2 Partb

The third degree Taylor polynomial about h = 2 for h is

T3(z) = h(2) + W (2)(z — 2) + %h”(Q)(m —2)? + é(w —2)3 (16)
:80+128(:c—2)+%(1‘—2)2+%(1‘—2)3. (17)



Thus, T5(1.9) ~ 67.98844.

3.3 Partc

The Lagrange error estimate for the third degree Taylor polynomial 73(x) assures us
that

M
|h(1.9) — T5(1,9)| < ﬁ|1.9—2|4, (18)
where M is chosen so that ‘h(4) (z)| < M when z lies in [1.9, 2.

Now A is increasing on the interval [1, 3], so if z € [1.9, 2], then

_ 54

WO (@) < W9 (2) = ==, (19)
584 . . .
and we may take M = 9 in the estimate (18). Thus, we find that
1 584 1 73
h(1.9) — T5(1.9)| < — - =—. = ~ 0.0002704 1074 2
Ih(19) = Ts(L9)] < 57 =5~ Top00 — 270000 ~ $0002704 < 31075, (20)
as required.
4 Problem 4
4.1 Parta
Applying the Fundamental Theorem of Calculus to what we are given we find that
t
xz(t) = -2 +/ v(T)dr. (21)
0

This means that z(3) = —10, z(5) = —7, and z(6) = —9. From the figure and the other
information given, we have 2/(t) = v(t) < 0 for 0 < ¢t < 3 and for 5 < ¢ < 6, while
2'(t) > 0 for 3 < t < 5. Thus, z is decreasing when 0 < ¢t < 3 and when 5 < ¢ < 6, while
x is increasing when 3 < ¢ < 5. thus, the particle is farthest to the left when ¢t = 3, and its
position at that instant is x = —10.

Note: If function continuous on [a, b] is increasing (respectively, decreasing) on (a, b), it
is necessarily increasing (respectively, decreasing) on [a,b]. We should thus include the
endpoints. Historically, the readers haven’t taken this subtlety into account.

5



4.2 Partb

Because z(0) = —2 and z(3) = —10, (see Part a, above), the particle moves through z = —8
once (leftward bound) when 0 < ¢ < 3. Because z(3) = —10 and x(5) = —7 (see Part a
again) it moves through = = —8 again (rightward bound) at some time in the interval

(3,5). Because z(5) = —7 and z(6) = —9 (see Part a again) it moves through —8 still again
(now leftward bound) at some time in the interval (5,6). The existence of these times
is guaranteed, in each case, because the differentiable function « must be continuous on
[0,6], and continuous functions have the intermediate value property. That these three
instances are the only instances is guaranteed by the fact the x must be monotonic on
each of the intervals [0, 3], [3, 5], and [5, 6] because velocity, the derivative of x, doesn’t
change sign at a point interior to any of these intervals.

4.3 Partc

Let o(t) denote the particle’s speed at time ¢. Then

o(t) = |v(t)], so that (22)

[o(t))* = [v(t)]?, (23)

20(t)o’ () = 2v(t)v'(t ), or, provided o (t) # 0, (24)
oy 00 (0

The numerator of this last fraction is positive (c(t) being non-zero), so the sign of o/ (t) is
the same as the sign of the product v(¢)v/(¢). On the interval (2, 3), we see from the graph
that v(t) < 0, but that v(¢) is increasing, so that v/(¢) > 0. It follows that v(¢)v'(¢) < 0 on
(2,3), and, therefore, that speed is decreasing on (2, 3).

44 Partd

Acceleration if v/(t). Thus, acceleration is negative on intervals where v(t) is decreasing.
From the graph and what we have been given about it, acceleration is negative on [0, 1)
and on (4, 6], and only on those intervals.



5 Problem 5

5.1 Parta

J'(z) = (z — 3)e” is positive for x > 3, negative for < 3, and zero when z = 3. Thus,
f is an increasing function on [3, c0) and a decreasing function on (—oo, 3]. By the First
Derivative Test, this means that f(3) is a local minimum for f.

5.2 Partb

J"(z) = (x—2)e”, which is positive when z > 2, negative when = < 2. Thus, f” is concave
upward on (2, 00), concave downward on (—oo,2). Combining these observations with
those of Part a, above, we conclude that f is both decreasing and concave upward on the
interval whose endpoints are + = 2 and = = 3.

Note: Whether to include the endpoints in intervals of concavity depends on which of
several commonly used definitions of concavity the writer prefers to adopt.

5.3 Partc

By the Fundamental Theorem of Calculus,

1~ = [ Fw (26)
= /13(t —3)el dt (27)
= (t—4)e 3 (28)
=3e—é’. 1 (29)

But it is given that f(1) = 7,50 f(3) = 7+ 3e — €.

6 Problem 6

6.1 Parta

See Figure 1.
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Figure 1: Problem 6, Part a

6.2 Partb

According to Euler, if f(¢) is a solution of the differential equation that stisfies f(0) = 8§,

then
f<§>~8+;:-(6—8):7,and (30)
O~ L= @
6.3 Partc
Because
y =6 @



we have

v Y Y
Y Y 33
y'=g06-y) -2y (33)
1y Ly
— . L=y (6—1y)—=y-2(6— 4
g g0-y) (6-y) -y 2(6-y) (34)
1
= ¥ -1 (6—y). (35)
Thus, 3'(0) = —2 and y"(0) = 8(6 — 8)(3 — 8)/32 = 2. So the second-degree Taylor
polynomial for f about ¢ = 0 is
To(t) = y(0) + /' (0)t + %y"(ow =8 — 2t + th. (36)
Thus,
5 29
Ty(1) =8-2+7 = 7. (37)
6.4 Partd

This differential equation is a logistic equation with an attracting equilibrium solution
y(t) = 6 and a repelling equilibrium solution y = 0. Thus, all positive solutions of this
equation decay toward the stable solution y(t) = 6 as ¢ — oo. In particular, solutions of
the differential equation for which y(0) > 6 remain larger than 6 but decrease toward,
and, in fact, approach, the horizontal line y = 6 as ¢ — co. So the range of the solution f,
which is determined by the initial condition f(0) = 8, is (6, 8].



