AP Calculus 2008 BC FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

June 20, 2017

1 Problem 1

1.1 Part a

The area of the region R is

$$
\begin{align*}
\int_{0}^{2}\left[\sin \pi x-\left(x^{3}-4 x\right)\right] d x & =\left.\left[-\frac{1}{\pi} \cos \pi x-\left(\frac{1}{4} x^{4}-2 x^{2}\right)\right]\right|_{0} ^{2} \tag{1}\\
& =\left[-\frac{1}{\pi} \cos 2 \pi-(4-8)\right]-\left[-\frac{1}{\pi} \cos 0-0\right]=4 \tag{2}
\end{align*}
$$

1.2 Part b

We must first find solutions, in the interval $[0,2]$, of the equation $x^{3}-4 x=-2$ to find the limits of integration. We do this numerically, and find that the solutions we need are $x_{1} \sim 1.67513$ and $x_{2} \sim 0.53919$.

The areas of that part of the region R which lies below the horizontal line $y=-2$ is given by the integral $\int_{x_{2}}^{x_{1}}\left[-2-\left(x^{3}-4 x\right)\right] d x$.

1.3 Part c

The area, $A(t)$, of a cross section of the solid perpendicular to the x-axis at $x=t$ is given by

$$
\begin{equation*}
A(t)=\left[\sin \pi t-\left(t^{3}-4 t\right)\right]^{2} \tag{3}
\end{equation*}
$$

Thus, the volume of the solid is

$$
\begin{equation*}
\int_{0}^{2}\left[\sin \pi t-\left(t^{3}-4 t\right)\right]^{2} d t \sim 9.97834 \tag{4}
\end{equation*}
$$

where we have evaluated the integral numerically because, although the integral is elementary, the calculation is lengthy and requires integration by parts.
Note: The exact value of the integral is $\frac{1129}{105}-\frac{24}{\pi^{3}}$.

1.4 Part d

Under the conditions given, the pool is a region in three-dimensional space whose base is R and whose cross section perpendicular to the x-axis at $x=t$ has area $A(t)$ given by

$$
\begin{equation*}
A(t)=\left[\sin \pi t-\left(t^{3}-4 t\right)\right](3-t) \tag{5}
\end{equation*}
$$

The required volume is thus

$$
\begin{equation*}
\int_{0}^{2}\left[\sin \pi t-\left(t^{3}-4 t\right)\right](3-t) d t \sim 8.36995 \tag{6}
\end{equation*}
$$

Where we have again integrated numerically to avoid a tedious calculation requiring integration by parts.
Note: The exact value of the integral is $\frac{116}{15}+\frac{2}{\pi}$.

2 Problem 2

2.1 Part a

At 5:30 pm, the rate at which the number of people standing in line was changing was approximately

$$
\begin{equation*}
\frac{L(7)-L(4)}{7-4}=\frac{150-126}{7-4}=8 \text { people per hour. } \tag{7}
\end{equation*}
$$

2.2 Part b

The average number of people standing in line during the first four hours that tickets were on sale was

$$
\begin{align*}
\frac{1}{4-0} \int_{0}^{4} L(t) d t & \sim \frac{1}{4}\left[\frac{120+156}{2}(1-0)+\frac{156+176}{2}(3-1)+\frac{176+126}{2}(4-3)\right] \tag{8}\\
& \sim \frac{621}{4}=155.25 . \tag{9}
\end{align*}
$$

2.3 Part c

The function L is given twice differentiable on $[0,9]$. It is therefore continuous on $[a, b]$ and differentiable on (a, b) when $[a, b]$ is any subinterval of $[0,9]$, and we may apply the Mean Value Theorem to L on any such interval. There must be points, then, $\xi_{1} \in(1,3)$ and $\xi_{2} \in(3,4)$, such that

$$
\begin{align*}
& L^{\prime}\left(\xi_{1}\right)=\frac{L(3)-L(1)}{3-1}=\frac{176-156}{3-1}>0, \text { and } \tag{10}\\
& L^{\prime}\left(\xi_{2}\right)=\frac{L(4)-L(3)}{4-3}=\frac{126-176}{1}<0 . \tag{11}
\end{align*}
$$

But $L^{\prime \prime}$ exists throughout $[0,9]$, so L^{\prime} is a continuous function on $\left[\xi_{1}, \xi_{2}\right]$. By the Intermediate Value Theorem for continuous functions, there must be a number $\eta_{1} \in\left(\xi_{1}, \xi_{2}\right)$ such that $L^{\prime}\left(\eta_{1}\right)=0$. By similar reasoning there must $\xi_{3} \in(4,7)$ for which $L^{\prime}\left(\xi_{3}\right)>0$, and so $\eta_{2} \in\left(\xi_{2}, \xi_{3}\right)$ where $L^{\prime}\left(\eta_{2}\right)=0$. Further, there must be $\xi_{4} \in(7,8)$ for which $L^{\prime}\left(\xi_{4}\right)<0$, and this guarantees $\eta_{3} \in\left(\xi_{3}, \xi_{4}\right)$ for which $L^{\prime}\left(\eta_{3}\right)=0$.
We conclude that $L^{\prime}(t)$ takes on the value 0 at least three times in the interval $(0,9)$.
Note: We can make this argument even if L is given merely differentiable instead of twice differentiable, although we can no longer depend on the continuity of L^{\prime}. However, derivatives necessarily have the Intermediate Value Property in spite of the fact that they may fail to be continuous ${ }^{1}$. To see that this is so, suppose that f is differentiable on an interval (a, b) and let $a<\alpha<\beta<b$. Suppose that $f^{\prime}(\alpha)<\lambda<f^{\prime}(\beta)$. We let F be the function defined on $[\alpha, \beta]$ by

$$
\begin{align*}
F(x) & =f(x)-\lambda x, \text { whence } \tag{12}\\
F^{\prime}(x) & =f^{\prime}(x)-\lambda . \tag{13}
\end{align*}
$$

[^0]Now F is continuous on $[\alpha, \beta]$, and so must have an absolute minimum on that intervalwhich must occur at either an endpoint or a critical point. But $F(\alpha)$ can't be a minimum because $F^{\prime}(\alpha)=f^{\prime}(\alpha)-\lambda<0$. Similarly, we deduce that $F(\beta)$ can't be a minimum because $F^{\prime}(\beta)>0$. It follows that there must be a critical number $x_{0} \in(\alpha, \beta)$-that is, a number x_{0} for which $F^{\prime}\left(x_{0}\right)=0$. But $F^{\prime}\left(x_{0}\right)=0$ is equivalent to $f^{\prime}\left(x_{0}\right)=\lambda$. \bullet

2.4 Part d

If $T(t)$ denotes the number of tickets that have been sold by time t, we are given that $T(0)=0$ and $T^{\prime}(t)=550 t e^{-t / 2}$. By the Fundamental Theorem of Calculus,

$$
\begin{equation*}
T(t)=T(0)+\int_{0}^{t} T^{\prime}(\tau) d \tau=550 \int_{0}^{t} \tau e^{-\tau / 2} d \tau \tag{14}
\end{equation*}
$$

The integral is elementary, but requires integration by parts, so we integrate numerically to learn that $T(3) \sim 972.78412$. Thus, 973 tickets have been sold by 3:00 pm.

3 Problem 3

3.1 Part a

The first-degree Taylor polynomial, $T_{1}(x)$, for h about $x=2$ is

$$
\begin{equation*}
T_{1}(x)=h(2)+h^{\prime}(2)(x-2)=80+128(x-2) . \tag{15}
\end{equation*}
$$

Putting $x=1.9$, we obtain $T_{1}(1.9)=67.2$. Thus, our estimated value for $h(1.9)$ is 67.2 . Because $h^{\prime \prime}(1)=42$ and we are given that $h^{\prime \prime}(x)$ is increasing on the interval [1,3], we know that $h^{\prime \prime}(x)>0$ on $[1,3]$. From this, we may infer that the graph of h is concave upward throughout this interval. Consequently, the graph of the Taylor polynomial of degree one at $x=2$, which is the graph of the tangent line at $x=2$, lies below the curve in [1,3]. Thus, our estimate of 67.2 for $h(1.9)$ is less than $h(1.9)$.

3.2 Part b

The third degree Taylor polynomial about $h=2$ for h is

$$
\begin{align*}
T_{3}(x) & =h(2)+h^{\prime}(2)(x-2)+\frac{1}{2} h^{\prime \prime}(2)(x-2)^{2}+\frac{1}{6}(x-2)^{3} \tag{16}\\
& =80+128(x-2)+\frac{244}{3}(x-2)^{2}+\frac{224}{9}(x-2)^{3} . \tag{17}
\end{align*}
$$

Thus, $T_{3}(1.9) \sim 67.98844$.

3.3 Part c

The Lagrange error estimate for the third degree Taylor polynomial $T_{3}(x)$ assures us that

$$
\begin{equation*}
\left|h(1.9)-T_{3}(1,9)\right| \leq \frac{M}{24}|1.9-2|^{4} \tag{18}
\end{equation*}
$$

where M is chosen so that $\left|h^{(4)}(x)\right| \leq M$ when x lies in $[1.9,2]$.
Now $h^{(4)}$ is increasing on the interval $[1,3]$, so if $x \in[1.9,2]$, then

$$
\begin{equation*}
h^{(4)}(x) \leq h^{(4)}(2)=\frac{584}{9} \tag{19}
\end{equation*}
$$

and we may take $M=\frac{584}{9}$ in the estimate (18). Thus, we find that

$$
\begin{equation*}
\left|h(1.9)-T_{3}(1.9)\right| \leq \frac{1}{24} \cdot \frac{584}{9} \cdot \frac{1}{10000}=\frac{73}{270000} \sim 0.0002704<3 \times 10^{-4} \tag{20}
\end{equation*}
$$

as required.

4 Problem 4

4.1 Part a

Applying the Fundamental Theorem of Calculus to what we are given we find that

$$
\begin{equation*}
x(t)=-2+\int_{0}^{t} v(\tau) d \tau \tag{21}
\end{equation*}
$$

This means that $x(3)=-10, x(5)=-7$, and $x(6)=-9$. From the figure and the other information given, we have $x^{\prime}(t)=v(t)<0$ for $0<t<3$ and for $5<t<6$, while $x^{\prime}(t)>0$ for $3<t<5$. Thus, x is decreasing when $0 \leq t \leq 3$ and when $5 \leq t \leq 6$, while x is increasing when $3 \leq t \leq 5$. thus, the particle is farthest to the left when $t=3$, and its position at that instant is $x=-10$.

Note: If function continuous on $[a, b]$ is increasing (respectively, decreasing) on (a, b), it is necessarily increasing (respectively, decreasing) on $[a, b]$. We should thus include the endpoints. Historically, the readers haven't taken this subtlety into account.

4.2 Part b

Because $x(0)=-2$ and $x(3)=-10$, (see Part a, above), the particle moves through $x=-8$ once (leftward bound) when $0<t<3$. Because $x(3)=-10$ and $x(5)=-7$ (see Part a again) it moves through $x=-8$ again (rightward bound) at some time in the interval $(3,5)$. Because $x(5)=-7$ and $x(6)=-9$ (see Part a again) it moves through -8 still again (now leftward bound) at some time in the interval $(5,6)$. The existence of these times is guaranteed, in each case, because the differentiable function x must be continuous on $[0,6]$, and continuous functions have the intermediate value property. That these three instances are the only instances is guaranteed by the fact the x must be monotonic on each of the intervals $[0,3],[3,5]$, and $[5,6]$ because velocity, the derivative of x, doesn't change sign at a point interior to any of these intervals.

4.3 Part c

Let $\sigma(t)$ denote the particle's speed at time t. Then

$$
\begin{align*}
\sigma(t) & =|v(t)|, \text { so that } \tag{22}\\
{[\sigma(t)]^{2} } & =[v(t)]^{2}, \text { and } \tag{23}\\
2 \sigma(t) \sigma^{\prime}(t) & =2 v(t) v^{\prime}(t), \text { or, provided } \sigma(t) \neq 0, \tag{24}\\
\sigma^{\prime}(t) & =\frac{v(t)}{\sigma(t)} v^{\prime}(t)=\frac{v(t) v^{\prime}(t)}{|v(t)|} . \tag{25}
\end{align*}
$$

The numerator of this last fraction is positive ($\sigma(t)$ being non-zero), so the sign of $\sigma^{\prime}(t)$ is the same as the sign of the product $v(t) v^{\prime}(t)$. On the interval $(2,3)$, we see from the graph that $v(t)<0$, but that $v(t)$ is increasing, so that $v^{\prime}(t)>0$. It follows that $v(t) v^{\prime}(t)<0$ on $(2,3)$, and, therefore, that speed is decreasing on $(2,3)$.

4.4 Part d

Acceleration if $v^{\prime}(t)$. Thus, acceleration is negative on intervals where $v(t)$ is decreasing. From the graph and what we have been given about it, acceleration is negative on $[0,1)$ and on $(4,6]$, and only on those intervals.

5 Problem 5

5.1 Part a

$f^{\prime}(x)=(x-3) e^{x}$ is positive for $x>3$, negative for $x<3$, and zero when $x=3$. Thus, f is an increasing function on $[3, \infty)$ and a decreasing function on $(-\infty, 3]$. By the First Derivative Test, this means that $f(3)$ is a local minimum for f.

5.2 Part b

$f^{\prime \prime}(x)=(x-2) e^{x}$, which is positive when $x>2$, negative when $x<2$. Thus, $f^{\prime \prime}$ is concave upward on $(2, \infty)$, concave downward on $(-\infty, 2)$. Combining these observations with those of Part a, above, we conclude that f is both decreasing and concave upward on the interval whose endpoints are $x=2$ and $x=3$.

Note: Whether to include the endpoints in intervals of concavity depends on which of several commonly used definitions of concavity the writer prefers to adopt.

5.3 Part c

By the Fundamental Theorem of Calculus,

$$
\begin{align*}
f(3)-f(1) & =\int_{1}^{3} f^{\prime}(t) d t \tag{26}\\
& =\int_{1}^{3}(t-3) e^{t} d t \tag{27}\\
& =\left.(t-4) e^{t}\right|_{1} ^{3} \tag{28}\\
& =3 e-e^{3} . \tag{29}
\end{align*}
$$

But it is given that $f(1)=7$, so $f(3)=7+3 e-e^{3}$.

6 Problem 6

6.1 Part a

See Figure 1.

Figure 1: Problem 6, Part a

6.2 Part b

According to Euler, if $f(t)$ is a solution of the differential equation that stisfies $f(0)=8$, then

$$
\begin{align*}
f\left(\frac{1}{2}\right) & \sim 8+\frac{1}{2} \cdot \frac{8}{8} \cdot(6-8)=7, \text { and } \tag{30}\\
f(1) & \sim 7+\frac{1}{2} \cdot \frac{7}{8} \cdot(6-7)=\frac{105}{16} . \tag{31}
\end{align*}
$$

6.3 Part c

Because

$$
\begin{equation*}
y^{\prime}=\frac{y}{8}(6-y) \tag{32}
\end{equation*}
$$

we have

$$
\begin{align*}
y^{\prime \prime} & =\frac{y^{\prime}}{8}(6-y)-\frac{y}{8} y^{\prime} \tag{33}\\
& =\frac{1}{8} \cdot \frac{y}{8}(6-y) \cdot(6-y)-\frac{1}{8} y \cdot \frac{y}{8}(6-y) \tag{34}\\
& =\frac{1}{32} y(3-y)(6-y) . \tag{35}
\end{align*}
$$

Thus, $y^{\prime}(0)=-2$ and $y^{\prime \prime}(0)=8(6-8)(3-8) / 32=\frac{5}{2}$. So the second-degree Taylor polynomial for f about $t=0$ is

$$
\begin{equation*}
T_{2}(t)=y(0)+y^{\prime}(0) t+\frac{1}{2} y^{\prime \prime}(0) t^{2}=8-2 t+\frac{5}{4} t^{2} \tag{36}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
T_{2}(1)=8-2+\frac{5}{4}=\frac{29}{4} . \tag{37}
\end{equation*}
$$

6.4 Part d

This differential equation is a logistic equation with an attracting equilibrium solution $y(t) \equiv 6$ and a repelling equilibrium solution $y \equiv 0$. Thus, all positive solutions of this equation decay toward the stable solution $y(t) \equiv 6$ as $t \rightarrow \infty$. In particular, solutions of the differential equation for which $y(0)>6$ remain larger than 6 but decrease toward, and, in fact, approach, the horizontal line $y=6$ as $t \rightarrow \infty$. So the range of the solution f, which is determined by the initial condition $f(0)=8$, is $(6,8]$.

[^0]: ${ }^{1}$ This fact is not ordinarily a part of elementary calculus, and it is to be presumed that examinees who want to use it must state it explicitly.

