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1 Problem 1

1.1 Part a

The area of the region R is∫ 2

0

[
sinπx−

(
x3 − 4x

)]
dx =

[
− 1

π
cosπx−

(
1

4
x4 − 2x2

)] ∣∣∣∣2
0

(1)

=

[
���

��
− 1

π
cos 2π − (4− 8)

]
−
[
���

��
− 1

π
cos 0− 0

]
= 4. (2)

1.2 Part b

We must first find solutions, in the interval [0, 2], of the equation x3 − 4x = −2 to find
the limits of integration. We do this numerically, and find that the solutions we need are
x1 ∼ 1.67513 and x2 ∼ 0.53919.

The areas of that part of the region R which lies below the horizontal line y = −2 is given

by the integral
∫ x1

x2

[
−2−

(
x3 − 4x

)]
dx.
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1.3 Part c

The area, A(t), of a cross section of the solid perpendicular to the x-axis at x = t is given
by

A(t) =
[
sinπt−

(
t3 − 4t

)]2
. (3)

Thus, the volume of the solid is∫ 2

0

[
sinπt−

(
t3 − 4t

)]2
dt ∼ 9.97834, (4)

where we have evaluated the integral numerically because, although the integral is ele-
mentary, the calculation is lengthy and requires integration by parts.

Note: The exact value of the integral is
1129

105
− 24

π3
.

1.4 Part d

Under the conditions given, the pool is a region in three-dimensional space whose base
is R and whose cross section perpendicular to the x-axis at x = t has area A(t) given
by

A(t) =
[
sinπt− (t3 − 4t)

]
(3− t). (5)

The required volume is thus∫ 2

0

[
sinπt− (t3 − 4t)

]
(3− t) dt ∼ 8.36995, (6)

Where we have again integrated numerically to avoid a tedious calculation requiring in-
tegration by parts.

Note: The exact value of the integral is
116

15
+

2

π
.

2 Problem 2

2.1 Part a

At 5:30 pm, the rate at which the number of people standing in line was changing was
approximately

L(7)− L(4)
7− 4

=
150− 126

7− 4
= 8 people per hour. (7)
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2.2 Part b

The average number of people standing in line during the first four hours that tickets
were on sale was

1

4− 0

∫ 4

0
L(t) dt ∼ 1

4

[
120 + 156

2
(1− 0) +

156 + 176

2
(3− 1) +

176 + 126

2
(4− 3)

]
(8)

∼ 621

4
= 155.25. (9)

2.3 Part c

The function L is given twice differentiable on [0, 9]. It is therefore continuous on [a, b]
and differentiable on (a, b) when [a, b] is any subinterval of [0, 9], and we may apply the
Mean Value Theorem to L on any such interval. There must be points, then, ξ1 ∈ (1, 3)
and ξ2 ∈ (3, 4), such that

L′(ξ1) =
L(3)− L(1)

3− 1
=

176− 156

3− 1
> 0, and (10)

L′(ξ2) =
L(4)− L(3)

4− 3
=

126− 176

1
< 0. (11)

But L′′ exists throughout [0, 9], so L′ is a continuous function on [ξ1, ξ2]. By the Interme-
diate Value Theorem for continuous functions, there must be a number η1 ∈ (ξ1, ξ2) such
that L′(η1) = 0. By similar reasoning there must ξ3 ∈ (4, 7) for which L′(ξ3) > 0, and so
η2 ∈ (ξ2, ξ3) where L′(η2) = 0. Further, there must be ξ4 ∈ (7, 8) for which L′(ξ4) < 0, and
this guarantees η3 ∈ (ξ3, ξ4) for which L′(η3) = 0.

We conclude that L′(t) takes on the value 0 at least three times in the interval (0, 9).

Note: We can make this argument even if L is given merely differentiable instead of
twice differentiable, although we can no longer depend on the continuity of L′. How-
ever, derivatives necessarily have the Intermediate Value Property in spite of the fact that
they may fail to be continuous1. To see that this is so, suppose that f is differentiable on
an interval (a, b) and let a < α < β < b. Suppose that f ′(α) < λ < f ′(β). We let F be the
function defined on [α, β] by

F (x) = f(x)− λx, whence (12)
F ′(x) = f ′(x)− λ. (13)

1This fact is not ordinarily a part of elementary calculus, and it is to be presumed that examinees who
want to use it must state it explicitly.
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Now F is continuous on [α, β], and so must have an absolute minimum on that interval—
which must occur at either an endpoint or a critical point. But F (α) can’t be a minimum
because F ′(α) = f ′(α) − λ < 0. Similarly, we deduce that F (β) can’t be a minimum
because F ′(β) > 0. It follows that there must be a critical number x0 ∈ (α, β)—that is, a
number x0 for which F ′(x0) = 0. But F ′(x0) = 0 is equivalent to f ′(x0) = λ.•

2.4 Part d

If T (t) denotes the number of tickets that have been sold by time t, we are given that
T (0) = 0 and T ′(t) = 550te−t/2. By the Fundamental Theorem of Calculus,

T (t) = T (0) +

∫ t

0
T ′(τ) dτ = 550

∫ t

0
τe−τ/2 dτ (14)

The integral is elementary, but requires integration by parts, so we integrate numerically
to learn that T (3) ∼ 972.78412. Thus, 973 tickets have been sold by 3:00 pm.

3 Problem 3

3.1 Part a

The first-degree Taylor polynomial, T1(x), for h about x = 2 is

T1(x) = h(2) + h′(2)(x− 2) = 80 + 128(x− 2). (15)

Putting x = 1.9, we obtain T1(1.9) = 67.2. Thus, our estimated value for h(1.9) is 67.2.
Because h′′(1) = 42 and we are given that h′′(x) is increasing on the interval [1, 3], we
know that h′′(x) > 0 on [1, 3]. From this, we may infer that the graph of h is concave
upward throughout this interval. Consequently, the graph of the Taylor polynomial of
degree one at x = 2, which is the graph of the tangent line at x = 2, lies below the curve
in [1, 3]. Thus, our estimate of 67.2 for h(1.9) is less than h(1.9).

3.2 Part b

The third degree Taylor polynomial about h = 2 for h is

T3(x) = h(2) + h′(2)(x− 2) +
1

2
h′′(2)(x− 2)2 +

1

6
(x− 2)3 (16)

= 80 + 128(x− 2) +
244

3
(x− 2)2 +

224

9
(x− 2)3. (17)

4



Thus, T3(1.9) ∼ 67.98844.

3.3 Part c

The Lagrange error estimate for the third degree Taylor polynomial T3(x) assures us
that

|h(1.9)− T3(1, 9)| ≤
M

24
|1.9− 2|4, (18)

where M is chosen so that
∣∣h(4)(x)∣∣ ≤M when x lies in [1.9, 2].

Now h(4) is increasing on the interval [1, 3], so if x ∈ [1.9, 2], then

h(4)(x) ≤ h(4)(2) = 584

9
, (19)

and we may take M =
584

9
in the estimate (18). Thus, we find that

|h(1.9)− T3(1.9)| ≤
1

24
· 584

9
· 1

10000
=

73

270000
∼ 0.0002704 < 3× 10−4, (20)

as required.

4 Problem 4

4.1 Part a

Applying the Fundamental Theorem of Calculus to what we are given we find that

x(t) = −2 +
∫ t

0
v(τ) dτ. (21)

This means that x(3) = −10, x(5) = −7, and x(6) = −9. From the figure and the other
information given, we have x′(t) = v(t) < 0 for 0 < t < 3 and for 5 < t < 6, while
x′(t) > 0 for 3 < t < 5. Thus, x is decreasing when 0 ≤ t ≤ 3 and when 5 ≤ t ≤ 6, while
x is increasing when 3 ≤ t ≤ 5. thus, the particle is farthest to the left when t = 3, and its
position at that instant is x = −10.

Note: If function continuous on [a, b] is increasing (respectively, decreasing) on (a, b), it
is necessarily increasing (respectively, decreasing) on [a, b]. We should thus include the
endpoints. Historically, the readers haven’t taken this subtlety into account.
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4.2 Part b

Because x(0) = −2 and x(3) = −10, (see Part a, above), the particle moves through x = −8
once (leftward bound) when 0 < t < 3. Because x(3) = −10 and x(5) = −7 (see Part a
again) it moves through x = −8 again (rightward bound) at some time in the interval
(3, 5). Because x(5) = −7 and x(6) = −9 (see Part a again) it moves through −8 still again
(now leftward bound) at some time in the interval (5, 6). The existence of these times
is guaranteed, in each case, because the differentiable function x must be continuous on
[0, 6], and continuous functions have the intermediate value property. That these three
instances are the only instances is guaranteed by the fact the x must be monotonic on
each of the intervals [0, 3], [3, 5], and [5, 6] because velocity, the derivative of x, doesn’t
change sign at a point interior to any of these intervals.

4.3 Part c

Let σ(t) denote the particle’s speed at time t. Then

σ(t) = |v(t)|, so that (22)

[σ(t)]2 = [v(t)]2, and (23)
2σ(t)σ′(t) = 2v(t)v′(t), or, provided σ(t) 6= 0, (24)

σ′(t) =
v(t)

σ(t)
v′(t) =

v(t)v′(t)

|v(t)|
. (25)

The numerator of this last fraction is positive (σ(t) being non-zero), so the sign of σ′(t) is
the same as the sign of the product v(t)v′(t). On the interval (2, 3), we see from the graph
that v(t) < 0, but that v(t) is increasing, so that v′(t) > 0. It follows that v(t)v′(t) < 0 on
(2, 3), and, therefore, that speed is decreasing on (2, 3).

4.4 Part d

Acceleration if v′(t). Thus, acceleration is negative on intervals where v(t) is decreasing.
From the graph and what we have been given about it, acceleration is negative on [0, 1)
and on (4, 6], and only on those intervals.
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5 Problem 5

5.1 Part a

f ′(x) = (x − 3)ex is positive for x > 3, negative for x < 3, and zero when x = 3. Thus,
f is an increasing function on [3,∞) and a decreasing function on (−∞, 3]. By the First
Derivative Test, this means that f(3) is a local minimum for f .

5.2 Part b

f ′′(x) = (x−2)ex, which is positive when x > 2, negative when x < 2. Thus, f ′′ is concave
upward on (2,∞), concave downward on (−∞, 2). Combining these observations with
those of Part a, above, we conclude that f is both decreasing and concave upward on the
interval whose endpoints are x = 2 and x = 3.

Note: Whether to include the endpoints in intervals of concavity depends on which of
several commonly used definitions of concavity the writer prefers to adopt.

5.3 Part c

By the Fundamental Theorem of Calculus,

f(3)− f(1) =
∫ 3

1
f ′(t) dt (26)

=

∫ 3

1
(t− 3)et dt (27)

= (t− 4)et
∣∣∣∣3
1

(28)

= 3e− e3. (29)

But it is given that f(1) = 7, so f(3) = 7 + 3e− e3.

6 Problem 6

6.1 Part a

See Figure 1.
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Figure 1: Problem 6, Part a

6.2 Part b

According to Euler, if f(t) is a solution of the differential equation that stisfies f(0) = 8,
then

f

(
1

2

)
∼ 8 +

1

2
· 8
8
· (6− 8) = 7, and (30)

f(1) ∼ 7 +
1

2
· 7
8
· (6− 7) =

105

16
. (31)

6.3 Part c

Because

y′ =
y

8
(6− y), (32)
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we have

y′′ =
y′

8
(6− y)− y

8
y′ (33)

=
1

8
· y
8
(6− y) · (6− y)− 1

8
y · y

8
(6− y) (34)

=
1

32
y(3− y)(6− y). (35)

Thus, y′(0) = −2 and y′′(0) = 8(6 − 8)(3 − 8)/32 = 5
2 . So the second-degree Taylor

polynomial for f about t = 0 is

T2(t) = y(0) + y′(0)t+
1

2
y′′(0)t2 = 8− 2t+

5

4
t2. (36)

Thus,

T2(1) = 8− 2 +
5

4
=

29

4
. (37)

6.4 Part d

This differential equation is a logistic equation with an attracting equilibrium solution
y(t) ≡ 6 and a repelling equilibrium solution y ≡ 0. Thus, all positive solutions of this
equation decay toward the stable solution y(t) ≡ 6 as t → ∞. In particular, solutions of
the differential equation for which y(0) > 6 remain larger than 6 but decrease toward,
and, in fact, approach, the horizontal line y = 6 as t → ∞. So the range of the solution f ,
which is determined by the initial condition f(0) = 8, is (6, 8].
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