AP Calculus 2010 BC (Form B) FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

June 8, 2017

1 Problem 1

1.1 Part a

The area of the region R is

$$
\begin{equation*}
\int_{0}^{2}[6-4 \ln (3-x)] d x \sim 6.81665 \tag{1}
\end{equation*}
$$

where we have carried out the integration numerically.
Note: The integral is elementary, but is most easily accomplished using integration by parts, which isn't on the AB syllabus. We have

$$
\begin{align*}
\int_{0}^{2}[6-4 \ln (3-x)] d x & =\left.6 x\right|_{0} ^{2}-\left.4(x-3) \ln (3-x)\right|_{0} ^{2}+4 \int_{0}^{2} d x=20-12 \ln 3 \tag{2}\\
& =4(5-3 \ln 3) . . \tag{3}
\end{align*}
$$

1.2 Part b

The volume obtained by revolving R about the line $y=8$ is given by

$$
\begin{equation*}
\pi \int_{0}^{2}\left([8-4 \ln (3-x)]^{2}-4\right) d x \sim 168.17954 \tag{4}
\end{equation*}
$$

where we have once again integrated numerically.

Note: The integral is elementary, and symbolic integration is possible. However it is lengthy, and numerical integration saves a fair amount of time. Symbolic integration gives

$$
\begin{equation*}
\pi \int_{0}^{2}\left([8-4 \ln (3-x)]^{2}-4\right) d x=24 \pi[13-2(6-\ln 3) \ln 3] . \tag{5}
\end{equation*}
$$

1.3 Part c

The volume of this solid is

$$
\begin{equation*}
\int_{0}^{2}[6-4 \ln (3-x)]^{2} d x \sim 26.26660 \tag{6}
\end{equation*}
$$

Note: Once more, we have carried out the integration numerically, though a symbolic integration is possible. Once again, the numerical integration saves time. For the curious,

$$
\begin{equation*}
\int_{0}^{2}[6-4 \ln (3-x)]^{2} d x=16[20-3(6-\ln 3) \ln 3] . \tag{7}
\end{equation*}
$$

2 Problem 2

2.1 Part a

The slope $m(t)$ of the tangent line to the path is given by

$$
\begin{equation*}
m(t)=\frac{y^{\prime}(t)}{x^{\prime}(t)} \tag{8}
\end{equation*}
$$

at least when this fraction is meaningful. Thus, we can find vertical tangent lies by solving the equation $x^{\prime}(t)=0$ and being sure that $y^{\prime}(t)$ is not simultaneously zero. (To see that we must include the latter condition, consider the curve $x=t^{3}, y=t^{2}$ at the origin.)
Working numerically, we find that the solutions $\theta_{1}<t_{2}$ we seek for the equation

$$
\begin{equation*}
14 \cos \left(t^{2}\right) \sin \left(e^{t}\right)=0 \tag{9}
\end{equation*}
$$

are $t_{1} \sim 1.14473$ and $t_{2} \sim 2.93258$. It is easily checked that neither of these values in a zero of $y^{\prime}(t)$.

2.2 Part b

By the Fundamental Theorem of Calculus,

$$
\begin{equation*}
x(1)=x(0)+\int_{0}^{t} x^{\prime}(\tau) d \tau \sim 9.31470 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
y(1)=y(0)+\int_{0}^{t} y^{\prime}(\tau) d \tau \sim 4.62054 \tag{11}
\end{equation*}
$$

where we have carried out the integrations numerically. We also have $m(1) \sim 0.86345$, so an equation for the line tangent to the path at the point corresponding to $t=1$ is (approximately)

$$
\begin{equation*}
y=4.62054+0.86345(x-9.31470) \tag{12}
\end{equation*}
$$

2.3 Part c

Speed $\sigma(t)$ at time t is given by

$$
\begin{equation*}
\sigma(t)=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} . \tag{13}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\sigma(1)=\sqrt{\left[x^{\prime}(1)\right]^{2}+\left[y^{\prime}(1)\right]^{2}} \sim 4.10526 . \tag{14}
\end{equation*}
$$

2.4 Part d

The acceleration vector $\mathbf{a}(t)$ at time t is given by

$$
\begin{align*}
\mathbf{a}(t) & =\left\langle x^{\prime \prime}(t), y^{\prime \prime}(t)\right\rangle \tag{15}\\
& =\left\langle 14 e^{t} \cos e^{t} \cos t^{2}-28 t \sin e^{t} \sin t^{2}, 4 t \cos t^{2}\right\rangle \tag{16}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\mathbf{a}(1) \sim\langle-28.42531,2.16121\rangle . \tag{17}
\end{equation*}
$$

3 Problem 3

3.1 Part a

The three-equal-interval midpoint Riemann sum that approximates the amount of water pumped into the pool during the time interval $0 \leq t \leq 12$ is

$$
\begin{equation*}
f(2) \cdot 4+f(6) \cdot 4+f(10) \cdot 4=660 . \tag{18}
\end{equation*}
$$

Consequently, about 660 cubic feet of water was pumped into the pool in the given twelvehour interval.

3.2 Part b

If water leaked at the rate $R(t)=25 e^{-0.05 t}$ cubic feet per hour, then, during the interval $0 \leq t \leq 12$, the amount of water lost was, in cubic feet,

$$
\begin{equation*}
25 \int_{0}^{12} e^{-t / 20} d t=-\left.500 e^{-t / 20}\right|_{0} ^{12}=500\left(1-e^{-3 / 5}\right) \tag{19}
\end{equation*}
$$

3.3 Part c

The total amount of water, in cubic feet, in the pool at the end of the twelve-hour period is thus about

$$
\begin{equation*}
1000+660-500\left(1-e^{-3 / 5}\right) \sim 1434.40582 \tag{20}
\end{equation*}
$$

To the nearest cubic foot, at time $t=12$ the pool contains 1434 cubic feet of water.

3.4 Part d

The rate at which the volume of water in the pool is increasing is $P(t)-R(t)$ cubic feet per hour. When $t=8$ this rate is $60-25 e^{-2 / 5} \sim 43.24200$ cubic feet per hour.
The relationship between the height, h, of water in the tank and the volume, V, of water in the tank is $V=\pi r^{2} h=144 \pi h$. Thus,

$$
\begin{align*}
h & =\frac{V}{144 \pi}, \text { and } \tag{21}\\
\frac{d h}{d t} & =\frac{1}{144 \pi} \frac{d V}{d t} \tag{22}
\end{align*}
$$

Setting $t=8$ in this latter equation gives (from what we have seen above)

$$
\begin{equation*}
\left.\frac{d h}{d t}\right|_{t=8}=\frac{1}{144 \pi}\left(60-25 e^{-2 / 5}\right) \sim 0.09558 \text { feet per hour. } \tag{23}
\end{equation*}
$$

4 Problem 4

4.1 Part a

The squirrel's direction changes when its velocity changes sign. That happens only at those values of t where the graph of velocity crosses the t-axis. There are two such places: $t=9$ and $t=15$.

4.2 Part b

The squirrel's distance from Building A at time T is the integral of its velocity from 0 to T. This integral is the algebraic sum of the signed areas associated with the appropriate regions between the velocity curve and the t-axis, taking the regions above the axis to have positive area and assigning negative areas to the regions below the t-axis. The area under the velocity curve on the interval $[0,9]$ is clearly larger than the area below the axis on the interval $[9,15]$, and this latter area is clearly smaller than the area above the axis on the interval $[15,18]$. Thus, the squirrel is farthest from Building A when $t=9$, and this distance is the area enclosed by the trapezoid whose vertices are $(0,0),(2,20),(7,20)$, and $(9,0)$. The area of this trapezoid is 140 , so at time $t=9$, the squirrel is 140 feet from Building A and is closer at all other times.

4.3 Part c

Summing the magnitudes of the signed areas, we find that the squirrel has traveled a total distance of $140+50+25=215$ feet.

4.4 Part d

On the interval $7<t<10$, the squirrel's velocity is given by a line, of slope

$$
\begin{equation*}
\frac{20-(-10)}{7-10}=-10 \tag{24}
\end{equation*}
$$

which passes through the point $(7,20)$, and therefore has equation

$$
\begin{equation*}
v(t)=20-10(t-7)=90-10 t \text { feet per second. } \tag{25}
\end{equation*}
$$

For the wquirrel's acceleration during this interval, we have

$$
\begin{equation*}
a(t)=v^{\prime}(t)=-10 \text { feet per second per second. } \tag{26}
\end{equation*}
$$

For distance, $x(t)$, from Building A, we have, when $7 \leq t \leq 10$,

$$
\begin{align*}
x(t) & =x(7)+\int_{7}^{t} v(\tau) d \tau \tag{27}\\
& =120+\int_{7}^{t}(90-10 \tau) d \tau \tag{28}\\
& =-5 t^{2}+90 t-265 \text { feet. } \tag{29}
\end{align*}
$$

5 Problem 5

5.1 Part a

From

$$
\begin{align*}
g(x) & =\frac{4 x}{1+x^{2}}, \text { we find } \tag{30}\\
g^{\prime}(x) & =\frac{4\left(1+x^{2}\right)-4 x(2 x)}{\left(1+x^{2}\right)^{2}}=\frac{4\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}} \tag{31}
\end{align*}
$$

Thus, $g^{\prime}(x)$ exists for all real values of x. The only point in the interval $(0, \infty)$ where $g^{\prime}(x)$ vanishes is at $x=1$, so if $g(x)$ takes on an absolute maximum in this interval, it must do so at $x=1$. Now $g(x)>0$ on $(0,1)$ so g is increasing on that interval. On the other hand $g^{\prime}(x)<0$ on $(1, \infty)$, which means that g is decreasing on that interval. We conclude that g does have an absolute maximum on $(0, \infty)$, that the absolute maximum occurs at $x=1$, and that the value of that absolute maximum is $g(1)=4 / 5$.
If g is to have an absolute minimum in $(0, \infty)$, it must lie at a critical point for g. However, g has only one critical point, and we have seen that g has an absolute maximum at that point. The function g is not a constant function, so it can't have a minimum value that's equal to its maximum value, and we conclude that g does not take on an absolute mininimum value on $(0, \infty)$.

5.2 Part b

The required area is given by the improper integral

$$
\begin{equation*}
\int_{1}^{\infty}\left[\frac{1}{x}-\frac{4 x}{1+4 x^{2}}\right] d x=\int_{1}^{\infty} \frac{d x}{x\left(1+4 x^{2}\right)} \tag{32}
\end{equation*}
$$

But we are concerned only with positive values of x, so

$$
\begin{align*}
\int \frac{d x}{x\left(1+4 x^{2}\right)} & =\int\left[\frac{1}{x}-\frac{4 x}{1+4 x^{2}}\right] d x \tag{33}\\
& =\ln x-\frac{1}{2} \ln \left(1+4 x^{2}\right)=\ln \frac{x}{\sqrt{1+4 x^{2}}} \tag{34}
\end{align*}
$$

Thus,

$$
\begin{align*}
\int_{1}^{\infty} \frac{d x}{x\left(1+4 x^{2}\right)} & =\lim _{T \rightarrow \infty} \int_{1}^{T} \frac{d x}{x\left(1+4 x^{2}\right)} \tag{35}\\
& =\left.\lim _{T \rightarrow \infty} \ln \frac{x}{\sqrt{1+4 x^{2}}}\right|_{1} ^{T} \tag{36}\\
& =\lim _{T \rightarrow \infty}\left[\ln \frac{T}{\sqrt{1+4 T^{2}}}-\ln \frac{1}{\sqrt{5}}\right] \tag{37}\\
& =\lim _{T \rightarrow \infty} \ln \frac{1}{\sqrt{T^{-2}+4}}-\ln \frac{1}{\sqrt{5}} \tag{38}\\
& =\ln \frac{1}{2}-\ln \frac{1}{\sqrt{5}}=\ln \frac{\sqrt{5}}{2} \tag{39}
\end{align*}
$$

6 Problem 6

6.1 Part a

We apply the Ratio Test to determine the radius of convergence:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\left(\frac{|2 x|^{n+1}}{n}\right)\left(\frac{n-1}{|2 x|^{n}}\right)\right]=|2 x| \lim _{n \rightarrow \infty} \frac{n-1}{n}=2|x|, \tag{40}
\end{equation*}
$$

and this is less than one when $|x|<\frac{1}{2}$ but greater than one when $|x|>\frac{1}{2}$. Thus the series converges when $-\frac{1}{2}<x<\frac{1}{2}$ but diverges when $x<-\frac{1}{2}$ and when $x>\frac{1}{2}$. When $x=\frac{1}{2}$, the series becomes the alternating harmonic series, which converges. When $x=-\frac{1}{2}$, the series becomes the harmonic series, which diverges. The interval of convergence is therefore $\left(-\frac{1}{2}, \frac{1}{2}\right]$, and the radius of convergence is $\frac{1}{2}$.

6.2 Part b

If

$$
\begin{equation*}
y=f(x)=\sum_{n=2}^{\infty}\left[(-1)^{n} \frac{(2 x)^{n}}{n-1}\right] \text { when }|x|<\frac{1}{2} \tag{41}
\end{equation*}
$$

then, differentiating term-by-term, we obtain

$$
\begin{equation*}
y^{\prime}=f^{\prime}(x)=\sum_{n=2}^{\infty}\left[(-1)^{n} \frac{2 n}{n-1}(2 x)^{n-1}\right], \tag{42}
\end{equation*}
$$

and we may write

$$
\begin{align*}
x y^{\prime}-y & =\sum_{n=2}^{\infty}\left[(-1)^{n} \frac{n}{n-1}(2 x)^{n}\right]-\sum_{n=2}^{\infty}\left[(-1)^{n} \frac{(2 x)^{n}}{n-1}\right] \tag{43}\\
& =\sum_{n=2}^{\infty}\left[(-1)^{n}\left(\frac{n}{n-1}-\frac{1}{n-1}\right)(2 x)^{n}\right], \tag{44}
\end{align*}
$$

at least for $x \in\left(-\frac{1}{2}, \frac{1}{2}\right)$, because both of the series being combined converge absolutely on that interval. Thus

$$
\begin{equation*}
x y^{\prime}-y=\sum_{n=2}^{\infty}(-2 x)^{n}, \tag{45}
\end{equation*}
$$

and this is a geometric series with common ratio $(-2 x)$. It follows from this last observation that, on the interval $\left(\left(-\frac{1}{2}, \frac{1}{2}\right)\right.$,

$$
\begin{equation*}
x y^{\prime}-y=\frac{4 x^{2}}{1+2 x}, \tag{46}
\end{equation*}
$$

which shows that $y=f(x)$, as given by the series above, is a solution of the differential equation (45).
Note: If we multiply equation (45) through by $\frac{1}{x^{2}}$, the equation becomes

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{y}{x}\right)=\frac{4}{1+2 x} \tag{47}
\end{equation*}
$$

We can easily obtain the initial condition $y(0)=0$ from the original series. Solving this initial value problem gives $f(x)=\sum_{n=2}^{\infty}\left[(-1)^{n} \frac{(2 x)^{n}}{n-1}\right]=2 x \ln (1+2 x)$ on the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$.

