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1 Problem 1

1.1 Part a

The area of the region R is ∫ 2

0
[6− 4 ln(3− x)] dx ∼ 6.81665, (1)

where we have carried out the integration numerically.

Note: The integral is elementary, but is most easily accomplished using integration by
parts, which isn’t on the AB syllabus. We have∫ 2

0
[6− 4 ln(3− x)] dx = 6x

∣∣∣∣2
0

− 4(x− 3) ln(3− x)
∣∣∣∣2
0

+ 4

∫ 2

0
dx = 20− 12 ln 3 (2)

= 4(5− 3 ln 3).. (3)

1.2 Part b

The volume obtained by revolving R about the line y = 8 is given by

π

∫ 2

0

(
[8− 4 ln(3− x)]2 − 4

)
dx ∼ 168.17954, (4)

where we have once again integrated numerically.

1



Note: The integral is elementary, and symbolic integration is possible. However it is
lengthy, and numerical integration saves a fair amount of time. Symbolic integration
gives

π

∫ 2

0

(
[8− 4 ln(3− x)]2 − 4

)
dx = 24π [13− 2(6− ln 3) ln 3] . (5)

1.3 Part c

The volume of this solid is∫ 2

0
[6− 4 ln(3− x)]2 dx ∼ 26.26660. (6)

Note: Once more, we have carried out the integration numerically, though a symbolic
integration is possible. Once again, the numerical integration saves time. For the curi-
ous, ∫ 2

0
[6− 4 ln(3− x)]2 dx = 16 [20− 3(6− ln 3) ln 3] . (7)

2 Problem 2

2.1 Part a

The slope m(t) of the tangent line to the path is given by

m(t) =
y′(t)

x′(t)
, (8)

at least when this fraction is meaningful. Thus, we can find vertical tangent lies by solving
the equation x′(t) = 0 and being sure that y′(t) is not simultaneously zero. (To see that we
must include the latter condition, consider the curve x = t3, y = t2 at the origin.)

Working numerically, we find that the solutions θ1 < t2 we seek for the equation

14 cos
(
t2
)
sin
(
et
)
= 0 (9)

are t1 ∼ 1.14473 and t2 ∼ 2.93258. It is easily checked that neither of these values in a zero
of y′(t).
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2.2 Part b

By the Fundamental Theorem of Calculus,

x(1) = x(0) +

∫ t

0
x′(τ) dτ ∼ 9.31470 (10)

and

y(1) = y(0) +

∫ t

0
y′(τ) dτ ∼ 4.62054, (11)

where we have carried out the integrations numerically. We also have m(1) ∼ 0.86345,
so an equation for the line tangent to the path at the point corresponding to t = 1 is
(approximately)

y = 4.62054 + 0.86345(x− 9.31470). (12)

2.3 Part c

Speed σ(t) at time t is given by

σ(t) =
√
[x′(t)]2 + [y′(t)]2. (13)

Thus,

σ(1) =
√
[x′(1)]2 + [y′(1)]2 ∼ 4.10526. (14)

2.4 Part d

The acceleration vector a(t) at time t is given by

a(t) =
〈
x′′(t), y′′(t)

〉
(15)

=
〈
14et cos et cos t2 − 28t sin et sin t2, 4t cos t2

〉
. (16)

Thus,

a(1) ∼
〈
−28.42531, 2.16121

〉
. (17)
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3 Problem 3

3.1 Part a

The three-equal-interval midpoint Riemann sum that approximates the amount of water
pumped into the pool during the time interval 0 ≤ t ≤ 12 is

f(2) · 4 + f(6) · 4 + f(10) · 4 = 660. (18)

Consequently, about 660 cubic feet of water was pumped into the pool in the given twelve-
hour interval.

3.2 Part b

If water leaked at the rate R(t) = 25e−0.05t cubic feet per hour, then, during the interval
0 ≤ t ≤ 12, the amount of water lost was, in cubic feet,

25

∫ 12

0
e−t/20 dt = −500e−t/20

∣∣∣∣12
0

= 500(1− e−3/5). (19)

3.3 Part c

The total amount of water, in cubic feet, in the pool at the end of the twelve-hour period
is thus about

1000 + 660− 500(1− e−3/5) ∼ 1434.40582. (20)

To the nearest cubic foot, at time t = 12 the pool contains 1434 cubic feet of water.

3.4 Part d

The rate at which the volume of water in the pool is increasing is P (t) − R(t) cubic feet
per hour. When t = 8 this rate is 60− 25e−2/5 ∼ 43.24200 cubic feet per hour.

The relationship between the height, h, of water in the tank and the volume, V , of water
in the tank is V = πr2h = 144πh. Thus,

h =
V

144π
, and (21)

dh

dt
=

1

144π

dV

dt
. (22)
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Setting t = 8 in this latter equation gives (from what we have seen above)

dh

dt

∣∣∣∣
t=8

=
1

144π
(60− 25e−2/5) ∼ 0.09558 feet per hour. (23)

4 Problem 4

4.1 Part a

The squirrel’s direction changes when its velocity changes sign. That happens only at
those values of t where the graph of velocity crosses the t-axis. There are two such places:
t = 9 and t = 15.

4.2 Part b

The squirrel’s distance from Building A at time T is the integral of its velocity from 0 to
T . This integral is the algebraic sum of the signed areas associated with the appropriate
regions between the velocity curve and the t-axis, taking the regions above the axis to
have positive area and assigning negative areas to the regions below the t-axis. The area
under the velocity curve on the interval [0, 9] is clearly larger than the area below the axis
on the interval [9, 15], and this latter area is clearly smaller than the area above the axis
on the interval [15, 18]. Thus, the squirrel is farthest from Building A when t = 9, and
this distance is the area enclosed by the trapezoid whose vertices are (0, 0), (2, 20), (7, 20),
and (9, 0). The area of this trapezoid is 140, so at time t = 9, the squirrel is 140 feet from
Building A and is closer at all other times.

4.3 Part c

Summing the magnitudes of the signed areas, we find that the squirrel has traveled a total
distance of 140 + 50 + 25 = 215 feet.

4.4 Part d

On the interval 7 < t < 10, the squirrel’s velocity is given by a line, of slope

20− (−10)
7− 10

= −10, (24)
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which passes through the point (7, 20), and therefore has equation

v(t) = 20− 10(t− 7) = 90− 10t feet per second. (25)

For the wquirrel’s acceleration during this interval, we have

a(t) = v′(t) = −10 feet per second per second. (26)

For distance, x(t), from Building A, we have, when 7 ≤ t ≤ 10,

x(t) = x(7) +

∫ t

7
v(τ) dτ (27)

= 120 +

∫ t

7
(90− 10τ) dτ (28)

= −5t2 + 90t− 265 feet. (29)

5 Problem 5

5.1 Part a

From

g(x) =
4x

1 + x2
, we find (30)

g′(x) =
4(1 + x2)− 4x(2x)

(1 + x2)2
=

4(1− x2)
(1 + x2)2

. (31)

Thus, g′(x) exists for all real values of x. The only point in the interval (0,∞) where g′(x)
vanishes is at x = 1, so if g(x) takes on an absolute maximum in this interval, it must do
so at x = 1. Now g(x) > 0 on (0, 1) so g is increasing on that interval. On the other hand
g′(x) < 0 on (1,∞), which means that g is decreasing on that interval. We conclude that g
does have an absolute maximum on (0,∞), that the absolute maximum occurs at x = 1,
and that the value of that absolute maximum is g(1) = 4/5.

If g is to have an absolute minimum in (0,∞), it must lie at a critical point for g. How-
ever, g has only one critical point, and we have seen that g has an absolute maximum at
that point. The function g is not a constant function, so it can’t have a minimum value
that’s equal to its maximum value, and we conclude that g does not take on an absolute
mininimum value on (0,∞).
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5.2 Part b

The required area is given by the improper integral∫ ∞
1

[
1

x
− 4x

1 + 4x2

]
dx =

∫ ∞
1

dx

x(1 + 4x2)
. (32)

But we are concerned only with positive values of x, so∫
dx

x(1 + 4x2)
=

∫ [
1

x
− 4x

1 + 4x2

]
dx (33)

= lnx− 1

2
ln(1 + 4x2) = ln

x√
1 + 4x2

. (34)

Thus, ∫ ∞
1

dx

x(1 + 4x2)
= lim

T→∞

∫ T

1

dx

x(1 + 4x2)
(35)

= lim
T→∞

ln
x√

1 + 4x2

∣∣∣∣T
1

(36)

= lim
T→∞

[
ln

T√
1 + 4T 2

− ln
1√
5

]
(37)

= lim
T→∞

ln
1√

T−2 + 4
− ln

1√
5

(38)

= ln
1

2
− ln

1√
5
= ln

√
5

2
. (39)

6 Problem 6

6.1 Part a

We apply the Ratio Test to determine the radius of convergence:

lim
n→∞

[(
|2x|n+1

n

)(
n− 1

|2x|n

)]
= |2x| lim

n→∞

n− 1

n
= 2|x|, (40)

and this is less than one when |x| < 1
2 but greater than one when |x| > 1

2 . Thus the series
converges when −1

2 < x < 1
2 but diverges when x < −1

2 and when x > 1
2 . When x = 1

2 ,
the series becomes the alternating harmonic series, which converges. When x = −1

2 ,
the series becomes the harmonic series, which diverges. The interval of convergence is
therefore

(
−1

2 ,
1
2

]
, and the radius of convergence is 1

2 .
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6.2 Part b

If

y = f(x) =
∞∑
n=2

[
(−1)n (2x)

n

n− 1

]
when |x| < 1

2
, (41)

then, differentiating term-by-term, we obtain

y′ = f ′(x) =
∞∑
n=2

[
(−1)n 2n

n− 1
(2x)n−1

]
, (42)

and we may write

xy′ − y =

∞∑
n=2

[
(−1)n n

n− 1
(2x)n

]
−
∞∑
n=2

[
(−1)n (2x)

n

n− 1

]
(43)

=
∞∑
n=2

[
(−1)n

(
n

n− 1
− 1

n− 1

)
(2x)n

]
, (44)

at least for x ∈
(
−1

2 ,
1
2

)
, because both of the series being combined converge absolutely on

that interval. Thus

xy′ − y =
∞∑
n=2

(−2x)n, (45)

and this is a geometric series with common ratio (−2x). It follows from this last observa-
tion that, on the interval

(
(−1

2 ,
1
2

)
,

xy′ − y =
4x2

1 + 2x
, (46)

which shows that y = f(x), as given by the series above, is a solution of the differential
equation (45).

Note: If we multiply equation (45) through by 1
x2 , the equation becomes

d

dx

(y
x

)
=

4

1 + 2x
. (47)

We can easily obtain the initial condition y(0) = 0 from the original series. Solving this
initial value problem gives f(x) =

∑∞
n=2

[
(−1)n (2x)n

n−1

]
= 2x ln(1 + 2x) on the interval(

−1
2 ,

1
2

)
.
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