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1 Problem 1

1.1 Part a

According to the model, the height of the water in the can at the end of the 60-day period
is∫ 60

0
[2 sin(0.03t) + 1.5] dt =

[
− 2

0.03
cos(0.03t) + 1.5t

] ∣∣∣∣60
0

(1)

=

(
−200

3
cos(9/5) + 90

)
+

200

3
=

[
470

3
− 200

3
cos

(
9

5

)]
mm.

(2)

1.2 Part b

The average rate of change in the height of water in the can over the 60-day period is

1

60

∫ 60

0
S′(t) dt =

1

60

[
470

3
− 200

3
cos

(
9

5

)]
=

[
47

18
− 10

9
cos

(
9

5

)]
mm/day, (3)

where we have inserted the value of the integral from equation (2).
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1.3 Part c

The volume V (t) of water in the can at time t is given by

V (t) = 100πS(t), so (4)
V ′(t) = 100πS′(t). (5)

Consequently,

V ′(7) = 100πS′(7) = 150π + 200π sin

(
21

100

)
cubic mm/sec. (6)

1.4 Part d

We have M ′(t) = 1
400(9t

2 − 60t+ 330). Using S′(t) as given, we find that

M ′(0)− S′(0) = 33

40
− 3

2
= −27

40
< 0, while (7)

D(60) =M ′(60)− S′(60) = 2853

40
− 2 sin

(
9

5

)
>

2853

40
− 2 > 69 > 0. (8)

Because D is a continuous function on [0, 60], it follows from the Intermediate Value
Theorem that there is a time t0 ∈ (0, 60) such that D(t0) = 0, which is to say that
M ′(t0) = S′(t0), or the two rates are the same.

2 Problem 2

2.1 Part a

The area of the polar curve r = r(θ) corresponding to the interval α ≤ θ ≤ β is given by
1
2

∫ β
α [r(θ)]

2 dθ, so we calculate

1

2

∫ π

π/2
[r(θ)]2 dθ =

1

2

∫ π

π/2
[3θ + sin θ]2 dθ (9)

Numeric integration gives 47.51322 for the required area. The symbolic integration is
elementary, but moderately tedious (involving as it does, an integration by parts and a
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use of the half-angle formula for the sine function), and there are better ways to spend
time on the exam. For the sake of completeness,

1

2

∫ π

π/2
[3θ + sin θ]2 dθ =

1

2

∫ π

π/2

[
9θ2 + 6θ sin θ + sin2 θ

]
dθ (10)

=
1

2

∫ π

π/2

[
9θ2 + 6θ sin θ +

1

2
(1− cos 2θ)

]
dθ (11)

=
3

2
θ3
∣∣∣∣π
π/2

− 3θ cos θ

∣∣∣∣π
π/2

+ 3

∫ π

π/2
cos θ dθ +

1

4
θ

∣∣∣∣π
π/2

− 1

8
sin 2θ

∣∣∣∣π
π/2

(12)

=
21

16
π3 + 3π + 3 sin θ

∣∣∣∣π
π/2

+
π

8
(13)

=
21

16
π3 +

25

8
π − 3. (14)

2.2 Part b

We are to solve the equation r(θ) cos θ = −3, with r(θ) as above. We call the solution θ0
for future reference. Thus, the equation to be solved is

(3θ + sin θ) cos θ = −3. (15)

Numerical solution gives θ0 ∼ 2.01692.

We have

y(θ0) = r(θ0) sin θ0 ∼ 6.27238. (16)

2.3 Part c

We have y(θ) = r(θ) sin θ, so that

y′(θ) = r′(θ) sin θ + r(θ) cos θ. (17)

This gives

y′
(
2π

3

)
=

5
√
3

4
+

1

2

(
−
√
3

2
− 2π

)
(18)

=
√
3− π. (19)
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But dydt =
dy
dθ ·

dθ
dt , and we are given dθ

dt = 2. Thus dy
dt = 2(

√
3− 2)when θ = 2π/3. This is the

y-component of the velocity of the particle at the instant in question; it is negative, so the
particle’s y-component is decreasing at that instant.

3 Problem 3

3.1 Part a

The area of the pictured region R is∫ 4

0

√
x dx+

∫ 6

4
(6− x) dx =

2

3
x3/2

∣∣∣∣4
0

+

(
6x− x2

2

) ∣∣∣∣6
4

=
16

3
+ 2 =

22

3
. (20)

3.2 Part b

A cross section of this solid perpendicular to the y-axis at y = t is a rectangle whose
height is 2t and whose base extends from the curve x = y2 to the curve x = 6 − y.
The area of such a cross section is therefore 2t

[
(6− t)− t2

]
, so the required integral is

2

∫ 2

0

[
6t− t2 − t3

]
dt.

Note: Evaluation of this integral is not required. For the curious,

2

∫ 2

0

[
6t− t2 − t3

]
dt = 2

[
3t2 − 1

3
t3 − 1

4
t4
] ∣∣∣∣2

0

(21)

= 2

[
12− 8

3
− 4

]
=

32

3
. (22)

3.3 Part c

The slope of the line y = 6−x is−1, so we seek a point on the curve y =
√
x where y′ = 1.

But y′ = 1
2x
−1/2 = 1 when x−1/2 = 2, or, equivalently, when x = 1

4 . The point P therefore
has coordinates

(
1
4 ,

1
2

)
.
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4 Problem 4

In effect, it is given that

f ′(3) = 0, (23)
f ′(8) = 0, (24)∫ 5

0
f(x) dx = −10, (25)∫ 10

5
f(x) dx = 27, (26)∫ 5

0

√
1 + [f ′(x)]2 dx = 11, and (27)∫ 10

5

√
1 + [f ′(x)]2 dx = 18. (28)

4.1 Part a

The average value of f over the interval [0, 5] is

1

5

∫ 5

0
f(x) dx =

1

5
· (−10) = −2. (29)

4.2 Part b

∫ 10

0
(3f(x) + 2) dx = 3

∫ 10

0
f(x) dx+ 2

∫ 10

0
dx (30)

= 3

∫ 5

0
f(x) dx+ 3

∫ 10

5
f(x) dx+ 2x

∣∣∣∣10
0

(31)

= 3 · (−10) + 3 · 27 + 2 · 10− 2 · 0 = 71. (32)

4.3 Part c

If g(x) =
∫ x
5 f(t) dt, then, by the Fundamental Theorem of Calculus, g′(x) = f(x). But

f(x) < 0 for on x ∈ (0, 5), and f(x) > 0 on (5, 10). Thus, the continuous function g
is decreasing on [0, 5]. The graph of g is concave upward on intervals where g′ = f
is increasing. But, from the graph and the critical points given for f , we see that f is
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increasing on [3, 8]. It follows that g is both concave upward and decreasing on the interval
(3, 5). Whether or not we include the endpoints in this interval depends upon which
definition (there are several) we have adopted for the term concave upward. The readers
haven’t worried about this subtlety in the past.

4.4 Part d

The required arc-length is given by
∫ 20

0

√
1 +

[
f ′
(
t

2

)]2
dt. Taking t = 2x, we see that

dt = 2 dx, that x = 0 when t = 0, and that x = 10 when t = 20. Consequently,

∫ 20

0

√
1 +

[
f ′
(
t

2

)]2
dt = 2

∫ 10

0

√
1 + [f ′(x)]2 dx (33)

= 2

[∫ 5

0

√
1 + [f ′(x)]2 dx+

∫ 10

5

√
1 + [f ′(x)]2 dx

]
(34)

= 2 · 11 + 2 · 18 = 54. (35)

5 Problem 5

5.1 Part a

Ben’s acceleration at time t = 5 is approximately

v(10)− v(0)
10− 0

=
2.3− 2.0

10
= 0.03 meters per second per second. (36)

5.2 Part b

The integral
∫ 60
0 |v(t)| dt is the integral of Ben’s speed. It measures the total distance Ben

has traveled over the interval 0 ≤ t ≤ 60. We have∫ 60

0
|v(t)| dt ∼ 2.0 · (10− 0) + 2.3 · (40− 10) + 2.5 · (60− 4) = 139, (37)

so the total distance Ben traveled during this minute is about 139 meters.
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5.3 Part c

We have

B(60)−B(40)

60− 40
=

49− 9

60− 40
− 40

20
= 2. (38)

We may apply the Mean Value Theorem here, because we are given that B is a twice
differentiable function, and this latter fact guarantees that B is continuous on [40, 60] and
differentiable on (40, 60)—which are the hypotheses of the Mean Value Theorem. Thus,
there must be a time t0 ∈ (40, 60) when v(t0) = B′(t0) = 2.

Note: We are cheating a bit, but this has to be what the examiners expected. We haven’t
been told just whereB is twice-differentiable or what the domain ofB is, and it’s not really
clear what it would mean for B′′(60) to exist if the domain of B is [0, 60]. We adopt the
convention that the problem takes differentiability at an end-point to be the appropriate
one-sided differentiability there; if we don’t do so, our conclusion that B is continuous at
t = 60 is unsupportable.

5.4 Part d

From L2 = 144+B2, we find that 2LL′ = 2BB′ = 2Bv. Thus, when t = 40 we have

2LL′ = 2Bv = �2 · 9 ·
5

�2
= 45. (39)

However, when t = 40, we also have L2 = 144+ 81 = 225, so that L = 15. Thus, at t = 40,
45 = 2LL′ = 2 · 15 · L′, and L′ = 45

30 = 3
2 meters per second.

6 Problem 6

6.1 Part a

We may substitute x3 for x in the Maclaurin series for ln(1 + x) to obtain that for f(x) =
ln(1 + x3), and the resulting series is

x3 − 1

2
x6 +

1

3
x9 − 1

4
x12 + · · ·+ (−1)n+1

n
x3n + · · · .
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6.2 Part b

The series for f must converge in the open interval (−1, 1), because x = 0 is the center of
the expansion, and the radius of convergence is given to be 1.

The only real issue is whether the series converges at endpoints. When x = 1 the series
becomes 1 − 1

2 + 1
3 −

1
4 − · · ·, which is the convergent alternating harmonic series. When

x = −1, the series becomes −1 − 1
2 −

1
3 −

1
4 − · · ·, which is the negative of the divergent

harmonic series. The interval of convergence for the Maclaurin series for f is therefore
(−1, 1].

6.3 Part c

We obtain the Maclaurin series for f ′ by term-by-term differentiation of the Maclaurin
series for f , and we obtain

3x2 − 3x5 + 3x8 − 3x11 + · · ·+ (−1)n+1x3n−1 + · · · .

Consequently, the first four terms of the Maclaurin series for f ′(t2) are

3t4 − 3t10 + 3t16 − 3t22.

Replacing f ′(t2) with the first two terms of this series in
∫ 1
0 f
′(t2) dt gives∫ 1

0

(
3t4 − 3t10

)
dt =

[
3

5
t5 − 3

11
t11
] ∣∣∣∣1

0

=
3

5
− 3

11
=

18

55
∼ 0.32727. (40)

6.4 Part d

The Maclaurin series for g begins with the terms

3

5
x5 − 3

11
x11 +

3

17
x17,

and we have been given that the series meets the hypotheses of the Alternating Series Test.
In Part c, above, we used the first two terms of this series to approximate g(1). Hence, the
error in our approximation is bounded by the magnitude of the third term, which is∣∣∣∣ 317 · 117

∣∣∣∣ = 3

17
<

3

15
=

1

5
(41)

when x = 1.
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Note: In fact, it can be shown that∫ 1

0
f ′(t2) dt =

1

4

[
2π +

√
3 ln

(
(7− 4

√
3
)]
∼ 0.43028, (42)

so the approximation of Part c is a pretty miserable one.
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