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1 Problem 1

1.1 Part a

Speed is the magnitude of the velocity vector, which we are given as

v(t) = 〈x′(t), y′(t)〉 = 〈4t+ 1, sin t2〉. (1)

Thus, speed is
√

(4t+ 1)2 + sin2 t2. When t = 3, this is
√

169 + sin2 9. The acceleration
vector a(t) is given by a(t) = v′(t) = 〈4, 2t cos t2〉. At time t = 3, a(3) = 〈4, 6 cos 9〉.

1.2 Part b

The slope of the line tangent to the path at t = 3 is

y′(3)

x′(3)
=

sin 9

13
∼ 0.03170. (2)

1.3 Part c

The position, r(t), of the particle at time t is

r(t) = 〈0, 4〉+

∫ t

0
〈4τ + 1, sin τ2〉 dτ, so (3)

r(3) = 〈0, 4〉+

∫ 3

0
〈4τ + 1, sin τ2〉 dτ (4)

Numerical integration gives r(3) ∼ 〈21.00000, 3.22644〉.
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1.4 Part d

Total distance traveled during 0 ≤ t ≤ 3 is the definite integral of speed from 0 to 3. We
calculated speed in Part a, above. By numerical integration, we have∫ 3

0

√
(4τ + 1)2 + sin2 τ2 dτ ∼ 21.09119 (5)

2 Problem 2

2.1 Part a

The rate at which the temperature of the tea is changing at time t = 3.5 is given, approxi-
mately, by the difference quotient

H(3.5 + 1.5)−H(3.5− 1.5)

(3.5 + 1.5)− (3.5− 15)
=

52− 60

3
= −8

3
degrees per minute. (6)

2.2 Part b

The average value T̄ of the temperature of the tea, in degrees Celsius, is

T̄ =
1

10

∫ 10

0
H(t) dt. (7)

The trapezoidal approximation for this integral is

1

10
· 1

2

4∑
k=1

[H(tk−1) +H(tk)] (tk − tk−1) (8)

=
1

20
[(66 + 60)(2− 0) + (60 + 52)(5− 2) + (52 + 44)(9− 5) + (44 + 43)(10− 9)] (9)

=
1059

20
. (10)

2.3 Part c

By the Fundamental Theorem of Calculus,
∫ 10

0
H ′(t) dt = H(10) − H(0) = −23. Thus,

−23◦ C is, again by the Fundamental Theorem of Calculus, the amount by which the
temperature had changed over the interval 0 ≤ t ≤ 10.
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2.4 Part d

B(t) is given by

B(t) = 100− 13.84

∫ t

0
e−0.173τ dτ. (11)

Therefore

B(10) = 100− 13.84

∫ 10

0
e−0.173τ dτ (12)

= 100− 13.84

(
− 1

0.173
e−0.173τ

) ∣∣∣∣10
0

∼ 34.18275. (13)

We seek H(10) − B(10) = 43 − 34.18275 = 8.81725. So the biscuits are about 8.81725◦ C.
cooler than the tea at time t = 10.

3 Problem 3

3.1 Part a

The perimeter, P , of the region shown consists of three line segments and the piece of the
curve y = e2x corresponding to 0 ≤ x ≤ k. This is given by

P = 1 + k + e2k +

∫ k

0

√
1 + 4e4x dx, (14)

where we have used the arc-length integral to find the arc-length of the portion of the
perimeter that is not a straight line.

3.2 Part b

The area of a cross section of the volume perpendicular to the x-axis at x = t is π(e2t)2 =
πe4t, so the volume of the solid is

π

∫ k

0
e4t dt =

π

4
e4t
∣∣∣∣k
0

=
π

4

(
e4k − 1

)
. (15)

3



3.3 Part c

From Part b, above, we have V (k) = π
4 (e4k − 1). Thus

dV

dt
=
dV

dk
· dk
dt

= πe4k · 1

3
. (16)

When k = 1
2 , this is π

3 e
2.

4 Problem 4

4.1 Part a

g(−3) = −6 +

∫ −3
0

f(t) dt = −6− 1

4
π · 32 = −6− 9

4
π; (17)

g′(x) =
d

dx

[
2x+

∫ x

0
f(t) dt

]
= 2 + f(x). (18)

G′(3) = 2 + f(−3) = 2. (19)

4.2 Part b

The absolute maximum of g must occur at an endpoint of the interval [−4, 3] or at a critical
point interior to that interval. But g′(x) = 2 + f(x), and this is simply the curve y = f(x)
shifted 2 units upward. Note that all of the shifted curve that lies to the left of the y-
axis lies above the x-axis, so that g′(x) > 0 when x lies to the left of the y-axis—and
for a substantial interval just to the right of the y-axis. For 0 ≤ x ≤ 3, we then have
g′(x) = 5 − 2x, so that g′(x) = 0 when x = 5

2 . Thus, g′(x) > 0 for −4 ≤ x < 5
2 , negative

for 5
2 < x ≤ 3, and zero when x = 5

2 . The latter value is the only critical value for g.
It is clear, on geometric ground, that the area under g′ on the interval [−4, 52 ] is positive
and exceeds, in magnitude, the area between the g′ curve and the x-axis on the interval
[52 , 2]. Consequently, 0 = f(−4) < g(52) and g(3) < g(52). The absolute maximum therefore
occurs at x = 5

2 .

4.3 Part c

The function g′ [see Part b, above, for an explicit description of g′] is increasing on [−4, 0]
and decreasing on [0, 3]. Inflection points are to be found where the monotonicity of
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the derivative changes, so x = 0 is the location of the only inflectiion point for this
curve.

4.4 Part d

We have f(−4) = −1 and f(3) = −3. The average rate of change of f on the interval
[−4, 3] is therefore

f(3)− f(−4)

4− (−3)
=

(−3)− (−1)

7
= −2

7
. (20)

That f ′(c) = −2
7 fails for all c in (−4, 3) doesn’t contradict the Mean Value Theorem be-

cause f ′(0) doesn’t exist. The hypotheses of the Mean Value Theorem require, among
other things, that a function f be differentiable on (−4, 3) before we may apply the theo-
rem to that function on the interval [−4, 3]. This is not so for this f , so there is no contra-
diction.

5 Problem 5

5.1 Part a

We are given

W ′(t) =
1

25
[W (t)− 300], (21)

so W ′(0) = 1400−300
25 = 44, and the equation for the line tangent to the solution curve for

the initial value problem, in (t, w) coordinates, at t = 0 is w = W (0) + W ′(0)(t − 9) =
1400 + 44t. When t = 1

4 , this gives w = 1400 + 11 = 1411, so the approximate amount of
solid waste at the end of the first three months of 2010 is 1411 tons.

5.2 Part b

Differentiating both sides of (21), we see that

d2W

dt2
=

1

25
· d
dt

[W (t)− 300] (22)

=
1

25
W ′(t), which, again by (21), is (23)

d2W

dt2
=

1

625
[W (t)− 300] . (24)
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Thus, W ′′(0) = 44
25 > 0, and, W ′′(t) being continuous, the solution curve must be concave

upward near t = 0. This means that the tangent line to the curve at t = 0 lies below the
curve, so the estimate given in Part a is an underestimate.

From equation (21), we see that either W (t) ≡ 300 or

W ′(t)

W (t)− 300
=

1

25
, (25)

which means that ∫ t

0

W ′(τ)

W (τ)− 300
dτ =

∫ t

0

1

25
dτ. (26)

We discard the constant solution because it doesn’t satisfy the initial conditon, and we
carry out the integration. Thus

ln |W (τ)− 300|
∣∣∣∣t
0

=
τ

25

∣∣∣∣t
0

(27)

Now W (0) = 1400, so W (0)− 300 > 0 and we may write

ln(W (t)− 300)− ln(1400− 300) =
t

25
, or (28)

ln

[
W (t)− 300

1100

]
=

t

25
. (29)

This leads to

W (t) = 300 + 1100et/25. (30)

6 Problem 6

6.1 Part a

The first four nonzero terms of the Taylor series for sinx about x = 0 are

x− x3

3!
+
x5

5!
− x7

7!
.

It follows that the first four non-zero terms of the Taylor series for sinx2 are

x2 − x6

3!
+
x10

5!
− x14

7!
.
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6.2 Part b

The first four nonzero terms of the Taylor series for cosx about x = 0 are

1− x2

2!
+
x4

4!
− x6

6!
.

Thus, the first four nonzero terms of the Taylor series for sinx2 + cosx about x = 0
are (

x2 − x6

3!

)
+

(
1− x2

2!
+
x4

4!
− x6

6!

)
(31)

= 1 +

(
1− 1

2!

)
x2 +

1

4!
x4 −

(
1

3!
+

1

6!

)
x6 (32)

= 1 +
1

2
x2 +

1

24
x4 − 121

720
x6. (33)

6.3 Part c

The coefficient of xn in the Taylor series about x = 0 for a function g is
g(n)(0)

n!
. From

Part b, above, we see that

f (6)(0)

6!
= −121

720
, (34)

and, 6! being 720, it follows that f (6)(0) = −121.

6.4 Part d

By Taylor’s Theorem with Lagrange Remainder, P4(x), the Taylor polynomial of degree 4

in powers of x for f(x), approximates f(x) to within
M

5!
|x|5, provided that M is chosen so

that |f (5)(t)| ≤ M on [0, x]. From the graph, we see that |f (5)(t)| ≤ 40 on any interval of
the form [0, x], where, say, 1

4 ≤ x ≤
11
40 . Consequently,∣∣∣∣P4

(
1

4

)
− f

(
1

4

)∣∣∣∣ ≤ 40

120
·
(

1

4

)5

=
1

3
· 1

1024
<

1

3
· 1

1000
=

1

3000
. (35)
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