AP Calculus 2011 BC FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

June 2, 2017

1 Problem 1

1.1 Part a

Speed is the magnitude of the velocity vector, which we are given as

$$
\begin{equation*}
\mathbf{v}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle=\left\langle 4 t+1, \sin t^{2}\right\rangle . \tag{1}
\end{equation*}
$$

Thus, speed is $\sqrt{(4 t+1)^{2}+\sin ^{2} t^{2}}$. When $t=3$, this is $\sqrt{169+\sin ^{2} 9}$. The acceleration vector $\mathbf{a}(t)$ is given by $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\left\langle 4,2 t \cos t^{2}\right\rangle$. At time $t=3, \mathbf{a}(3)=\langle 4,6 \cos 9\rangle$.

1.2 Part b

The slope of the line tangent to the path at $t=3$ is

$$
\begin{equation*}
\frac{y^{\prime}(3)}{x^{\prime}(3)}=\frac{\sin 9}{13} \sim 0.03170 . \tag{2}
\end{equation*}
$$

1.3 Part c

The position, $\mathbf{r}(t)$, of the particle at time t is

$$
\begin{align*}
& \mathbf{r}(t)=\langle 0,4\rangle+\int_{0}^{t}\left\langle 4 \tau+1, \sin \tau^{2}\right\rangle d \tau, \text { so } \tag{3}\\
& \mathbf{r}(3)=\langle 0,4\rangle+\int_{0}^{3}\left\langle 4 \tau+1, \sin \tau^{2}\right\rangle d \tau \tag{4}
\end{align*}
$$

Numerical integration gives $\mathbf{r}(3) \sim\langle 21.00000,3.22644\rangle$.

1.4 Part d

Total distance traveled during $0 \leq t \leq 3$ is the definite integral of speed from 0 to 3 . We calculated speed in Part a, above. By numerical integration, we have

$$
\begin{equation*}
\int_{0}^{3} \sqrt{(4 \tau+1)^{2}+\sin ^{2} \tau^{2}} d \tau \sim 21.09119 \tag{5}
\end{equation*}
$$

2 Problem 2

2.1 Part a

The rate at which the temperature of the tea is changing at time $t=3.5$ is given, approximately, by the difference quotient

$$
\begin{equation*}
\frac{H(3.5+1.5)-H(3.5-1.5)}{(3.5+1.5)-(3.5-15)}=\frac{52-60}{3}=-\frac{8}{3} \text { degrees per minute. } \tag{6}
\end{equation*}
$$

2.2 Part b

The average value \bar{T} of the temperature of the tea, in degrees Celsius, is

$$
\begin{equation*}
\bar{T}=\frac{1}{10} \int_{0}^{10} H(t) d t . \tag{7}
\end{equation*}
$$

The trapezoidal approximation for this integral is

$$
\begin{align*}
& \frac{1}{10} \cdot \frac{1}{2} \sum_{k=1}^{4}\left[H\left(t_{k-1}\right)+H\left(t_{k}\right)\right]\left(t_{k}-t_{k-1}\right) \tag{8}\\
& =\frac{1}{20}[(66+60)(2-0)+(60+52)(5-2)+(52+44)(9-5)+(44+43)(10-9)] \tag{9}\\
& =\frac{1059}{20} \tag{10}
\end{align*}
$$

2.3 Part c

By the Fundamental Theorem of Calculus, $\int_{0}^{10} H^{\prime}(t) d t=H(10)-H(0)=-23$. Thus, $-23^{\circ} \mathrm{C}$ is, again by the Fundamental Theorem of Calculus, the amount by which the temperature had changed over the interval $0 \leq t \leq 10$.

2.4 Part d

$B(t)$ is given by

$$
\begin{equation*}
B(t)=100-13.84 \int_{0}^{t} e^{-0.173 \tau} d \tau \tag{11}
\end{equation*}
$$

Therefore

$$
\begin{align*}
B(10) & =100-13.84 \int_{0}^{10} e^{-0.173 \tau} d \tau \tag{12}\\
& =100-\left.13.84\left(-\frac{1}{0.173} e^{-0.173 \tau}\right)\right|_{0} ^{10} \sim 34.18275 \tag{13}
\end{align*}
$$

We seek $H(10)-B(10)=43-34.18275=8.81725$. So the biscuits are about $8.81725^{\circ} \mathrm{C}$. cooler than the tea at time $t=10$.

3 Problem 3

3.1 Part a

The perimeter, P, of the region shown consists of three line segments and the piece of the curve $y=e^{2 x}$ corresponding to $0 \leq x \leq k$. This is given by

$$
\begin{equation*}
P=1+k+e^{2 k}+\int_{0}^{k} \sqrt{1+4 e^{4 x}} d x \tag{14}
\end{equation*}
$$

where we have used the arc-length integral to find the arc-length of the portion of the perimeter that is not a straight line.

3.2 Part b

The area of a cross section of the volume perpendicular to the x-axis at $x=t$ is $\pi\left(e^{2 t}\right)^{2}=$ $\pi e^{4 t}$, so the volume of the solid is

$$
\begin{equation*}
\pi \int_{0}^{k} e^{4 t} d t=\left.\frac{\pi}{4} e^{4 t}\right|_{0} ^{k}=\frac{\pi}{4}\left(e^{4 k}-1\right) \tag{15}
\end{equation*}
$$

3.3 Part c

From Part b, above, we have $V(k)=\frac{\pi}{4}\left(e^{4 k}-1\right)$. Thus

$$
\begin{equation*}
\frac{d V}{d t}=\frac{d V}{d k} \cdot \frac{d k}{d t}=\pi e^{4 k} \cdot \frac{1}{3} . \tag{16}
\end{equation*}
$$

When $k=\frac{1}{2}$, this is $\frac{\pi}{3} e^{2}$.

4 Problem 4

4.1 Part a

$$
\begin{align*}
g(-3) & =-6+\int_{0}^{-3} f(t) d t=-6-\frac{1}{4} \pi \cdot 3^{2}=-6-\frac{9}{4} \pi ; \tag{17}\\
g^{\prime}(x) & =\frac{d}{d x}\left[2 x+\int_{0}^{x} f(t) d t\right]=2+f(x) . \tag{18}\\
G^{\prime}(3) & =2+f(-3)=2 . \tag{19}
\end{align*}
$$

4.2 Part b

The absolute maximum of g must occur at an endpoint of the interval $[-4,3]$ or at a critical point interior to that interval. But $g^{\prime}(x)=2+f(x)$, and this is simply the curve $y=f(x)$ shifted 2 units upward. Note that all of the shifted curve that lies to the left of the y axis lies above the x-axis, so that $g^{\prime}(x)>0$ when x lies to the left of the y-axis-and for a substantial interval just to the right of the y-axis. For $0 \leq x \leq 3$, we then have $g^{\prime}(x)=5-2 x$, so that $g^{\prime}(x)=0$ when $x=\frac{5}{2}$. Thus, $g^{\prime}(x)>0$ for $-4 \leq x<\frac{5}{2}$, negative for $\frac{5}{2}<x \leq 3$, and zero when $x=\frac{5}{2}$. The latter value is the only critical value for g. It is clear, on geometric ground, that the area under g^{\prime} on the interval $\left[-4, \frac{5}{2}\right]$ is positive and exceeds, in magnitude, the area between the g^{\prime} curve and the x-axis on the interval $\left[\frac{5}{2}, 2\right]$. Consequently, $0=f(-4)<g\left(\frac{5}{2}\right)$ and $g(3)<g\left(\frac{5}{2}\right)$. The absolute maximum therefore occurs at $x=\frac{5}{2}$.

4.3 Part c

The function g^{\prime} [see Part b, above, for an explicit description of g^{\prime}] is increasing on $[-4,0]$ and decreasing on $[0,3]$. Inflection points are to be found where the monotonicity of
the derivative changes, so $x=0$ is the location of the only inflection point for this curve.

4.4 Part d

We have $f(-4)=-1$ and $f(3)=-3$. The average rate of change of f on the interval $[-4,3]$ is therefore

$$
\begin{equation*}
\frac{f(3)-f(-4)}{4-(-3)}=\frac{(-3)-(-1)}{7}=-\frac{2}{7} . \tag{20}
\end{equation*}
$$

That $f^{\prime}(c)=-\frac{2}{7}$ fails for all c in $(-4,3)$ doesn't contradict the Mean Value Theorem because $f^{\prime}(0)$ doesn't exist. The hypotheses of the Mean Value Theorem require, among other things, that a function f be differentiable on $(-4,3)$ before we may apply the theorem to that function on the interval $[-4,3]$. This is not so for this f, so there is no contradiction.

5 Problem 5

5.1 Part a

We are given

$$
\begin{equation*}
W^{\prime}(t)=\frac{1}{25}[W(t)-300], \tag{21}
\end{equation*}
$$

so $W^{\prime}(0)=\frac{1400-300}{25}=44$, and the equation for the line tangent to the solution curve for the initial value problem, in (t, w) coordinates, at $t=0$ is $w=W(0)+W^{\prime}(0)(t-9)=$ $1400+44 t$. When $t=\frac{1}{4}$, this gives $w=1400+11=1411$, so the approximate amount of solid waste at the end of the first three months of 2010 is 1411 tons.

5.2 Part b

Differentiating both sides of (21), we see that

$$
\begin{align*}
\frac{d^{2} W}{d t^{2}} & =\frac{1}{25} \cdot \frac{d}{d t}[W(t)-300] \tag{22}\\
& =\frac{1}{25} W^{\prime}(t), \text { which, again by }(21), \text { is } \tag{23}\\
\frac{d^{2} W}{d t^{2}} & =\frac{1}{625}[W(t)-300] . \tag{24}
\end{align*}
$$

Thus, $W^{\prime \prime}(0)=\frac{44}{25}>0$, and, $W^{\prime \prime}(t)$ being continuous, the solution curve must be concave upward near $t=0$. This means that the tangent line to the curve at $t=0$ lies below the curve, so the estimate given in Part a is an underestimate.

From equation (21), we see that either $W(t) \equiv 300$ or

$$
\begin{equation*}
\frac{W^{\prime}(t)}{W(t)-300}=\frac{1}{25} \tag{25}
\end{equation*}
$$

which means that

$$
\begin{equation*}
\int_{0}^{t} \frac{W^{\prime}(\tau)}{W(\tau)-300} d \tau=\int_{0}^{t} \frac{1}{25} d \tau \tag{26}
\end{equation*}
$$

We discard the constant solution because it doesn't satisfy the initial conditon, and we carry out the integration. Thus

$$
\begin{equation*}
\left.\ln |W(\tau)-300|\right|_{0} ^{t}=\left.\frac{\tau}{25}\right|_{0} ^{t} \tag{27}
\end{equation*}
$$

Now $W(0)=1400$, so $W(0)-300>0$ and we may write

$$
\begin{align*}
\ln (W(t)-300)-\ln (1400-300) & =\frac{t}{25}, \text { or } \tag{28}\\
\ln \left[\frac{W(t)-300}{1100}\right] & =\frac{t}{25} . \tag{29}
\end{align*}
$$

This leads to

$$
\begin{equation*}
W(t)=300+1100 e^{t / 25} . \tag{30}
\end{equation*}
$$

6 Problem 6

6.1 Part a

The first four nonzero terms of the Taylor series for $\sin x$ about $x=0$ are

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} .
$$

It follows that the first four non-zero terms of the Taylor series for $\sin x^{2}$ are

$$
x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\frac{x^{14}}{7!} .
$$

6.2 Part b

The first four nonzero terms of the Taylor series for $\cos x$ about $x=0$ are

$$
1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}
$$

Thus, the first four nonzero terms of the Taylor series for $\sin x^{2}+\cos x$ about $x=0$ are

$$
\begin{align*}
\left(x^{2}-\frac{x^{6}}{3!}\right)+\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}\right. & \left.-\frac{x^{6}}{6!}\right) \tag{31}\\
& =1+\left(1-\frac{1}{2!}\right) x^{2}+\frac{1}{4!} x^{4}-\left(\frac{1}{3!}+\frac{1}{6!}\right) x^{6} \tag{32}\\
& =1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{121}{720} x^{6} \tag{33}
\end{align*}
$$

6.3 Part c

The coefficient of x^{n} in the Taylor series about $x=0$ for a function g is $\frac{g^{(n)}(0)}{n!}$. From Part b, above, we see that

$$
\begin{equation*}
\frac{f^{(6)}(0)}{6!}=-\frac{121}{720} \tag{34}
\end{equation*}
$$

and, 6 ! being 720 , it follows that $f^{(6)}(0)=-121$.

6.4 Part d

By Taylor's Theorem with Lagrange Remainder, $P_{4}(x)$, the Taylor polynomial of degree 4 in powers of x for $f(x)$, approximates $f(x)$ to within $\frac{M}{5!}|x|^{5}$, provided that M is chosen so that $\left|f^{(5)}(t)\right| \leq M$ on $[0, x]$. From the graph, we see that $\left|f^{(5)}(t)\right| \leq 40$ on any interval of the form $[0, x]$, where, say, $\frac{1}{4} \leq x \leq \frac{11}{40}$. Consequently,

$$
\begin{equation*}
\left|P_{4}\left(\frac{1}{4}\right)-f\left(\frac{1}{4}\right)\right| \leq \frac{40}{120} \cdot\left(\frac{1}{4}\right)^{5}=\frac{1}{3} \cdot \frac{1}{1024}<\frac{1}{3} \cdot \frac{1}{1000}=\frac{1}{3000} \tag{35}
\end{equation*}
$$

