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1 Problem1

1.1 Parta

Speed is the magnitude of the velocity vector, which we are given as

v(t) = ('(t),y'(t)) = (4t + 1,sint?). (1)

Thus, speed is \/(4t + 1)2 4 sin?t2. When t = 3, this is /169 + sin?9. The acceleration
vector a(t) is given by a(t) = v/(t) = (4,2t cost?). Attime t = 3, a(3) = (4,6 cos9).

1.2 Partb

The slope of the line tangent to the path at ¢ = 3 is
y'(3)  sin9

73) " 13 ~ 0.03170. ()
1.3 Partc
The position, r(t), of the particle at time ¢ is
t
r(t) = (0,4) +/ (47 + 1,sin72) dr, so (3)
0
3
r(3) = (0,4) +/ (4t + 1,sin7'2) dr (4)
0

Numerical integration gives r(3) ~ (21.00000, 3.22644).

1



14 Partd

Total distance traveled during 0 < ¢ < 3 is the definite integral of speed from 0 to 3. We
calculated speed in Part a, above. By numerical integration, we have

3
/ \/(4T +1)2 + sin? 72 dr ~ 21.09119 (5)
0

2 Problem 2

2.1 Parta

The rate at which the temperature of the tea is changing at time ¢t = 3.5 is given, approxi-
mately, by the difference quotient

H(35+15)— H(35-15) 52-60 8 .
G515 —(35-15) ~ 3 -3 degrees per minute. (6)

2.2 Partb

The average value T of the temperature of the tea, in degrees Celsius, is
1 0
T=— H(t)dt. 7
o) HO )

The trapezoidal approximation for this integral is

o ;i [ (1) + H (1)) (1~ t51) ®

= % [(66 4+ 60)(2 —0) + (60 4+ 52)(5 —2) + (52 4+44)(9 — 5) + (44 4+ 43)(10 - 9)] (9)

- %29 (10)
2.3 Partc

10
By the Fundamental Theorem of Calculus, / H'(t)dt = H(10) — H(0) = —23. Thus,

0
—23° C is, again by the Fundamental Theorem of Calculus, the amount by which the
temperature had changed over the interval 0 <t < 10.

2



24 Partd
B(t) is given by

B(t) =100 — 13.84 /O t e 01T d4r, (11)
Therefore

10
B(10) = 100 — 13.84/ e 01737 g7 (12)
0

1
=1 — 1384 ———— —0.17371
00 —13.8 ( e

We seek H(10) — B(10) = 43 — 34.18275 = 8.81725. So the biscuits are about 8.81725° C.
cooler than the tea at time ¢ = 10.

10

~ 34.18275. (13)
0

3 Problem 3

3.1 Parta

The perimeter, P, of the region shown consists of three line segments and the piece of the

curve y = ** corresponding to 0 < z < k. This is given by

k
P=1+k¢+€2k+/ V1+4de* dx, (14)
0

where we have used the arc-length integral to find the arc-length of the portion of the
perimeter that is not a straight line.

3.2 Partb

The area of a cross section of the volume perpendicular to the z-axis at = ¢ is m(e?")? =
me!t, so the volume of the solid is

k T k
7T/ et dt = St
0 4

= Z <e4k — 1) . (15)
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3.3 Partc

From Part b, above, we have V (k) = %(64’“ —1). Thus

v dv dk

1
When k = 1, this is Tel
4 Problem 4
4.1 Parta
-3 1 9

g(—3) = —6 —i—/o f(t)dt =—6— i 32=-6-— Yl (17)

J(z) = % {Q:U + /0 (1) dt] — 24 f(2). (18)

G'(3) =2+ f(-3) =2 (19)

4.2 Partb

The absolute maximum of g must occur at an endpoint of the interval [—4, 3] or at a critical
point interior to that interval. But ¢’(z) = 2 + f(z), and this is simply the curve y = f(x)
shifted 2 units upward. Note that all of the shifted curve that lies to the left of the y-
axis lies above the z-axis, so that ¢’(z) > 0 when z lies to the left of the y-axis—and
for a substantial interval just to the right of the y-axis. For 0 < x < 3, we then have
¢'(z) = 5 — 2z, so that ¢'(z) = 0 when = = 3. Thus, ¢/(z) > 0 for —4 < z < 5, negative
for % < z < 3, and zero when z = % The latter value is the only critical value for g.
It is clear, on geometric ground, that the area under ¢’ on the interval [—4, g] is positive
and exceeds, in magnitude, the area between the ¢’ curve and the z-axis on the interval
[5,2]. Consequently, 0 = f(—4) < g(3) and ¢(3) < g(3). The absolute maximum therefore

occurs at x = %

4.3 Partc

The function ¢’ [see Part b, above, for an explicit description of ¢'] is increasing on [—4, 0]
and decreasing on [0,3]. Inflection points are to be found where the monotonicity of



the derivative changes, so x = 0 is the location of the only inflectiion point for this
curve.

44 Partd

We have f(—4) = —1 and f(3) = —3. The average rate of change of f on the interval
[—4, 3] is therefore
fB) —f(=4) _(3)-(=1) _ 2

4—(-3) 7 T (20)

That f'(c) = —% fails for all ¢ in (—4,3) doesn’t contradict the Mean Value Theorem be-
cause f’(0) doesn’t exist. The hypotheses of the Mean Value Theorem require, among
other things, that a function f be differentiable on (—4, 3) before we may apply the theo-
rem to that function on the interval [—4, 3]. This is not so for this f, so there is no contra-
diction.

5 Problem 5

5.1 Parta

We are given

1
T 25
so W’(0) = 14992300 — 44, and the equation for the line tangent to the solution curve for
the initial value problem, in (¢, w) coordinates, at t = 0is w = W(0) + W/(0)(t — 9) =
1400 + 44t. When t = %, this gives w = 1400 + 11 = 1411, so the approximate amount of
solid waste at the end of the first three months of 2010 is 1411 tons.

W' (t) = —[W(¢) — 300], 1)

5.2 Partb

Differentiating both sides of (21), we see that

w1 d

= 55 3 W () = 300] (22)
= %W’ (t), which, again by (21), is (23)

w1

— = oE [W(t) — 300]. (24)



Thus, W”(0) = 33 > 0, and, W”(t) being continuous, the solution curve must be concave
upward near ¢t = 0. This means that the tangent line to the curve at ¢ = 0 lies below the
curve, so the estimate given in Part a is an underestimate.

From equation (21), we see that either W (¢) = 300 or

w1
W(t)—300 25 5

which means that

/ W (r W/— 500 ¢ / 25 47 (26)

We discard the constant solution because it doesn’t satisfy the initial conditon, and we
carry out the integration. Thus

t t
In [W(r) — 300]| = — 27)
0 25 0
Now W (0) = 1400, so W(0) — 300 > 0 and we may write
In(W (t) — 300) — In(1400 — 300) = % or (28)
W(t)—300] ¢
N [ 1100 } T 25 @9)
This leads to
W (t) = 300 4 1100e'/%°. (30)
6 Problem 6
6.1 Parta

The first four nonzero terms of the Taylor series for sin x about = = 0 are

2 2> 2

rT— o+

315 7

It follows that the first four non-zero terms of the Taylor series for sin 2 are
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6.2 Partb

The first four nonzero terms of the Taylor series for cos x about = = 0 are

1 1172 564 ZL‘G
20 4 6l
Thus, the first four nonzero terms of the Taylor series for sin 2% + cosx about z = 0
are
6 2 4 6
5 T x T
B 1\ , 1, (1 1\ 4
—1+<1—!>m +4!ac—(3!+6!>x (32)
1 121
T R I S )
+ 2:1: 2456 720x (33)
6.3 Partc
g™ (0
The coefficient of z" in the Taylor series about = 0 for a function g is . From
n!
Part b, above, we see that
©)(0 121
7o _ 2 (34)
6! 720

and, 6! being 720, it follows that f(6)(0) = —121.

6.4 Partd

By Taylor’s Theorem with Lagrange Remainder, P;(z), the Taylor polynomial of degree 4
M
in powers of x for f(z), approximates f(x) to within = |2|°, provided that M is chosen so

that [f(®)()] < M on [0, z]. From the graph, we see that |£®)(t)| < 40 on any interval of
the form [0, z], where, say, § < z < 1I. Consequently,

1 1 40 /1\° 1 1 1 1 1
Pl=)—f(Z)l<—=-(2) =2 — <=~ = | 35
4(4) f(4>‘—120 <4> 37024 =3 1000 _ 3000 (35)




