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1 Problem 1

1.1 Part a

The rate of change, in cubic feet per hour, of the volume of water in the pipe at time t is
R(t)−D(t), where

R(t) = 20 sin

(
t2

35

)
, (1)

and

D(t) = −0.04t3 + 0.4t2 + 0.96t. (2)

Thus,

v(t) = R(t)−D(t) (3)

= 0.04t3 − 0.4t2 − 0.96t+ 20 sin

(
t2

35

)
. (4)

Integrating numerically, we find that the amount of water, in cubic feet, that flows into
the tank in the eight-hour time interval 0 ≤ t ≤ 8 is∫ 8

0
R(t) dt =

∫ 8

0
20 sin

(
t2

35

)
dt ∼ 76.57035. (5)

1.2 Part b

The rate of change of volume of water in the pipe at time t = 3 is

v(3) = −0.31363 cubic feet per hour. (6)
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This is negative, and v′(t) is continuous, so the volume of water in the tank is decreasing
when t is near 3.

Note: We have phrased our answer this way because very few authors give a definition
for the phrase “increasing at x = a Instead, the usual definition is for “increasing on an
interval”.

1.3 Part c

From a plot, we see that v(t) is zero at a value t = t0 near t = 3, negative immediately to
the left of this zero, and positive to the right. It follows from the First Derivative Test that
this zero of v(t) gives a relative minimum for the amount of water in the pipe. Neither
endpoint can be a global minimum, because v(t) is negative to the right of t = 0 and v(t) is
positive to the left of t = 8. Solving numerically, we find that t0 ∼ 3.27155 hours. Hence,
volume is minimal at about t = 3.27155 hours.

1.4 Part d

There are intially 30 cubic feet of water in the pipe, and the pipe can hold 50 cubic feet of
water before overflowing, so, using what we have seen in Part a, above, we can determine
the time of overflow by solving the equation

30 +

∫ t

0
v(τ) dτ = 50. (7)

for t.

Note: Solution of this equation is not required. However, numerical methods give t ∼
8.23202, which lies outside the domain we were given. We conclude that the pipe doesn’t
overflow during the specified interval.

2 Problem 2

2.1 Part a

If v(t) = 〈x′(t), y′(t)〉 = 〈cos t2, e0.5t〉 and the particle is at (3, 5) when t = 1, then the
particle’s position vector r(t) at time t is given by

r(t) = 〈x(t), y(t)〉 = 〈3, 5〉+
∫ t

1
v(τ) dτ (8)

Thus, x(2) = 3 +

∫ 2

1
cos τ2 dτ . Integrating numerically, we obtain x(2) ∼ 2.55694.
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2.2 Part b

The slope of the particle’s curve at time t is

y′(t)

x′(t)
=

e0.5t

cos t2
. (9)

We set this quotient equal to 2 and solve numerically. We obtain t ∼ 0.84016.

2.3 Part c

The particle’s speed is
√

[x′(t)]2 + [y′(t)]2, and this is 3 when cos2 t2 + et = 9. Solving
numericallly yields t ∼ 2.19590.

2.4 Part d

The total distance traveled by the particle from time t = 0 to time t = 1 is the integral of

speed over that time interval:
∫ 1

0

√
cos2 τ2 + eτ dτ . Numerical integration gives distance

traveled at time t = 1 as approximately 1.59461.

3 Problem 3

3.1 Part a

Using data from the table, we find that the approximate value of the derivative v′(16)
is

v′(1.8) ∼ v(20)− v(12)
20− 12

=
240− 200

20− 12
= 5 meters/min. (10)

3.2 Part b

The definite integral
∫ 40

0
|v(t)| dt gives the actual distance, in meters, that Johanna trav-

eled in the time interval 0 ≤ t ≤ 40. The right Riemann sum approximation of this
distance is 12 · |200|+ 8 · |240|+ 4 · | − 220|+ 16 · |150| = 7600 m.
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3.3 Part c

If Bob’s velocity at time t is B(t) = t3 − 6t2 + 300 meters per minute, then his acceleration
at time t is B′(t) = 3t2 − 12t. Thus his acceleration at time t = 5 is v′(5) = 15 meters per
minute per minute.

3.4 Part d

Bob’s average velocity over the interval [0, 10] is

1

10

∫ 10

0
B(τ) dτ =

1

10

∫ 10

0

(
τ3 − 6τ2 + 300

)
dτ (11)

=
1

10

[
τ4

4
− 2τ3 + 300τ

] ∣∣∣∣10
0

= 350 meters per minute. (12)

4 Problem 4

4.1 Part a

See Figure 1.
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Figure 1: Problem 4, Part a: Slope Field
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4.2 Part b

If y′ = 2x− y, then y′′ = 2− y′ = 2− 2x+ y. In the second quadrant, x < 0 and y > 0, so
y′′ > 0 throughout that quadrant. It follows that any solution curve that passes through
any part of the second quadrant must be concave upward there.

4.3 Part c

If f is a solution of the differential equation y′ = 2x − y for which f(2) = 3, then f ′(2) =
2 · 2 − 3 = 1, so f doesn’t have a critical point at x = 2. Thus, f has neither a maximum
nor a minimum at x = 2.

4.4 Part d

If y = mx+ b is a solution of the differential equation y′ = 2x− y, then, on the one hand,
direct differentiation of the solution shows that we must have y′ = m. On the other hand,
the differential equation implies that we must also have y′ = 2x− (mx+b) = (2−m)x−b.
Consequently, m = (2 −m)x − b, which we can rewrite and (2 −m)x − (m + b) ≡ 0. It
follows that m = 2 and b = −2.

4.5 Remark

The differential equation y′ = 2x − y can be rewritten as y′ + y = 2x, which has the form
y′+p(x)y = q(x). Such a differential equation can always be solved by choosing a function
P (x) such that P ′(x) = p(x) and multiplying the differential equation through by eP (x).
After doing so, we find that the new equation can always be put in the form

d

dx

[
yeP (x)

]
= q(x)eP (x). (13)

All that then remains is to carry out the integration on the right side.

Applying this technique to the current equation, we obtain

ky′ex + yex = 2xex, or (14)
d

dx
[yex] = 2xex (15)

An integration by parts on the right side now gives

yex = 2xex − 2ex + C, or (16)
y = 2x− 2 + Ce−x. (17)

This is the general solution to the differential equation.
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The initial value problem of Part c can now be solved by substituting 3 for y and 2 for x,
to learn that we must take C = e2. This gives the solution y = 2x− 2 + e2−x. We can use
this solution to confirm the conclusions obtained above for Part c of the problem.

We can also obtain the linear solution required in Part d by taking C = 0 in the general
solution.

5 Problem 5

5.1 Part a

If k = 3,

f(x) =
1

x2 − kx
, and (18)

f ′(x) =
k − 2x

(x2 − kx)2
, (19)

then

f(4) =
1

16− 12
= 4 and (20)

f ′(4) =
3− 8

(16− 12)2
= − 5

16
. (21)

An equation for the desired tangent line is therefore

y =
1

4
− 5

16
(x− 4). (22)

5.2 Part b

Putting k = 4, we have

f ′(x) =
4− 2x

(x2 − 4x)2
, (23)

so f ′(2) = 0. The denominator of the derivative is never negative, so the sign of the
derivative is the same as the sign of its numerator (except of course, when x = 4). Thus
f ′(x) > 0 when x is in the region immediately to the left of x = 2, and f ′(x) < 0 when
x is in the region immediately to the right of x = 2. By the First Derivative Test, f has a
relative maximum at x = 2. (Note: It is also possible to draw this conclusion by way of the
Second Derivative Test, but doing so requires more computation than the First Derivative
Test requires.)
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5.3 Part c

If f ′(−5) = 0 then

k − 2 · (−5)
[(−5)2 − k · (−5)]2

= 0, (24)

Thus, k = −10.

5.4 Part d

If

A

x
+

B

x− 6
=
A(x− 6) +Bx

x2 − 6x
=

1

x2 − 6x
, (25)

then equating coefficients of like powers of x in the numerators gives A + B = 0 and
−6A = 1. Thus, A = −1/6 and B = 1/6. It follows that

1

x2 − 6x
=

1

6

[
1

x− 6
− 1

x

]
, so that (26)∫

dx

x2 − 6x
=

1

6

∫ [
1

x− 6
− 1

x

]
dx (27)

=
1

6
ln

∣∣∣∣x− 6

x

∣∣∣∣+ C (28)

for some constant C.

6 Problem 6

6.1 Part a

We have

lim
n→∞

[
3n|x|n+1

n+ 1
· n

3n−1|x|n

]
= 3|x| lim

n→∞

1

1 + (1/n)
= 3|x|. (29)

By the Ratio Test, the series converges when this limit is less than one; it diverges when
this limit is greater than one. Hence, the radius of convergence is 1/3.
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6.2 Part b

We can obtain the first four nonzero terms of the Maclaurin series for f ′ by differentiating
the original series term by term. The radius of convergence of the derived power series
is the same as that of the original power series—which is 1/3 in this case. The derivative
of the n-th term of the given series here is (−3)n−1xn−1, so the first four nonzero terms of
the derived series are

1− 3x+ 9x2 − 27x3.

This is the geometric series with common ratio −3x, so f ′(x) =
1

1 + 3x
when |x| <

1/3.

6.3 Part c

We have

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

6
+ Higher Order Terms. (30)

We obtain the Maclaurin polyomial of degree three for exf(x) by multiplying the series
for ex and the series for f(x) and retaining the low order terms. This gives

exf(x) =

(
1 + x+

x2

2
+
x3

6
+ H. O. T.

)(
x− 3x2

2
+ 3x3 + H. O. T.

)
(31)

= x− x2

2
+ 2x3 − 13x4

3
+ H. O. T. (32)

So the required polynomial is

P (x) = x− x2

2
+ 2x3. (33)
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