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1 Problem 1

1.1 Part a

We estimate R′(2) as

R′(2) ∼ R(3)−R(1)
3− 1

=
950− 1190

2
= −120 liters/hour2. (1)

1.2 Part b

To estimate the total amount of water removed from the tank during the time interval
[0, 8] with a left Riemann sum having four sub-intervals, we may write

R(0) · [1− 0] +R(1) · [3− 1] +R(3) · [6− 3] +R(6) · [8− 6] = (2)
1340 · 1 + 1190 · (3− 1) + 950 · (6− 3) + 740 · (8− 6) = 8050. (3)

The function R is decreasing, so the left-hand endpoint of each subinterval gives the max-
imum value of R on that subinterval. Thus, a left-hand Riemann sum gives an overesti-
mate of the integral.

1.3 Part c

The total amount of water in the tank at time t is

50000 +

∫ t

0
[W (τ)−R(τ)] dτ = 50000 + 2000

∫ t

0
e−τ

2/20 dτ −
∫ t

0
R(τ) dτ, (4)
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or, when t = 8,

∼ 50000 + 2000

∫ 8

0
e−τ

2/20 dτ − 8050. (5)

Thus, after carrying out the remaining integration numerically, we find that the amount
of water in the tank when t = 8 is approximately 49786.19532 liters. To the nearest liter,
this is 49786 liters.

1.4 Part d

We consider the function F (t) =W (t)−R(t). The functionsW andR are both continuous
on the interval [0, 8], so the function F is also continuous on that interval. We have F (0) =
660, while F (8) ∼ −618.5 to the nearest tenth. Thus, F (0) > 0 while F (8) < 0, and, by the
Intermediate Value Propery of continouus functions, there is a point ξ somewhere in the
interval (0, 8) for which F (ξ) = 0. For this ξ we have W (ξ) − R(ξ), so the answer to the
question is “Yes.”

2 Problem 2

2.1 Part a

The graph gives y(3) = −1/2. We obtain x(3) from

x(t) = x(0) +

∫ t

0
x′(τ) dτ, whence (6)

x(3) = 5 +

∫ t

0

[
τ2 + sin 3τ2

]
dτ ∼ 14.37704, (7)

via numerical integration. Thus, the position of the particle at time t = 3 is approximately
(14.37704,−0.5).

2.2 Part b

The slope of the line tangent to the curve
(
x(t), y(t)

)
at the point where t = 3 is

y′(t)

x′(t)

∣∣∣∣
t=3

=
y′(t)

t2 + sin 3t2

∣∣∣∣
t=3

(8)

=
1/2

9 + sin 27
∼ 0.05022, (9)
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where we have read y′(3) from the given graph.

2.3 Part c

The speed σ(t), of the particle at time t is

σ(t) =
√
[x′(t)]2 + [y′(t)]2, (10)

so speed at time t = 3 is

σ(3) =
√
[9 + sin 27]2 + (1/4) ∼ 9.96892. (11)

2.4 Part d

The total distance, s traveled over the time interval [0, 2] is

s =

∫ 2

0
σ(τ) dτ =

∫ 2

0

√
[x′(τ)]2 + [y′(τ ]2 dτ (12)

=

∫ 1

0

√
[τ2 + sin 3τ2]2 + (−2)2 dτ +

∫ 2

1
[τ2 + sin 3τ2] dτ (13)

∼ 2.23787 + 2.11200 = 4.34987. (14)

Note: It must be noted, in the course of these numerical integrations, that the second
integral is over the interval [1, 2], where the graph gives y′(τ) ≡ 0. For 1 ≤ t ≤ 2, we then
have

| sin 3t2| ≤ 1 ≤ t2, (15)

so that t2 + sin 3t2 ≥ 0 when 1 ≤ t ≤ 2. This means that, on the interval [1, 2], we may
replace

√
[x′(t)]2 + [y′(t)]2 =

√
[t2 + sin 3t2]2 + 0 with t2 + sin 3t2—as we have done. In

my opinion, a solution that fails to make this observation explicitly is incomplete.

3 Problem 3

For a graph of g, see Figure 1.
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Figure 1: Problem 3, Graph of g

3.1 Part a

If g(x) =
∫ x
2 f(t) dt then, by the Fundamental Theorem of Calculus, g′(x) = f(x). While

g′(10) = −, we see that g′(x) is negative for all values of x in some punctured neighbor-
hood of x = 10. Thus, by the First Derivative Test, g has neither a relative minimum nor a
relative maximum at x = 10.

3.2 Part b

Arguing again from the given graph, which is that of g′, we see that g′ is increasing on an
interval just to the left of x = 4 but decreasing on an interval just to the right of x = 4.
Thus, g has an inflection point where x = 4. (In fact, g is concave upward immediately to
the left of x = 4 and concave downward immediately to the right of x = 4.)

3.3 Part c

The absolute minimum value must occur either at an endpoint of the interval or at a point
where g′(x) undergoes a sign change from negative to positive as x increases. The only
points that qualify are x = −4, x = −2, and x = 12. Summing the areas of the appropriate
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triangles (with appropriate signs), we see that g(−4) = −4, g(−2) = −9, and g(12) = −4.
Thus, g has its absolute minimum at x = −8.

Similar reasoning shows that the absolute maximum of g(x) can only be at x = −4, x = 6,
or x = 12. But this makes g(6) = 8 the absolute maximum. (We evaluated the other two
possibilities in the preceding paragraph.)

3.4 Part d

On any interval of the form [x, 2], with −4 ≤ x < 2, the area between the curve y = f(x)
and the x-axis, and lying above the x-axis, exceeds that below the x-axis. Thus guarantees
that, for such x, g(x) < 0.

On the other hand, on any interval of the form [2, x], with x > 2, the area of the region
bounded by f and below the x-axis doesn’t exceed that of the region above the x-axis
unless x > 10. This means that g(x) ≥ 0 for x ≤ x ≤ 10, and g(x) < 0 when 10 < x.

The desired intervals are [−4, 2] and [10, 12].

4 Problem 4

4.1 Solution 1

4.1.1 Part a

From the equation
dy

dx
= x2 − 1

2
y, we have

d2y

dx2
=

d

dx

(
dy

dx

)
(16)

=
d

dx

(
x2 − 1

2
y

)
(17)

= 2x− 1

2

dy

dx
(18)

= 2x− 1

2

(
x2 − 1

2
y

)
. (19)
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4.1.2 Part b

At the point (−2, 8), we have

dy

dx

∣∣∣∣
(−2,8)

= (−2)2 − 1

2
· 8 = 0, and (20)

d2y

dx2

∣∣∣∣
(−2,8)

= 2(−2)− 1

2
· 0 = −4 < 0. (21)

By the Second Derivative Test, this curve has a local maximum at (−2, 8).

4.1.3 Part c

By the continuity of the solution of a differential equation, we have

lim
x→−1

[g(x)− 2] = g(−1)− 2 = 0. (22)

Also,

lim
x→−1

3(x+ 1)2 = 0. (23)

We may therefore attempt to evaluate the limit by l’Hôpital’s Rule. This gives

lim
x→−1

g(x)− 2

3(x+ 1)2
= lim

x→−1

g′(x)

6(x+ 1)
, (24)

provided the latter limit exists.

But

lim
x→−1

g′(x)

6(x+ 1)
= lim

x→−1

x2 − g(x)/2
6(x+ 1)

(25)

= lim
x→−1

2x2 − g(x)
12(x+ 1)

. (26)

Here, 2x2 − g(x) = [2x2 − 2] + [2 − g(x)] → 0 and 12(x + 1) → 0 as x → −1, so we may
attempt l’Hôpital’s Rule again. This gives

lim
x→−1

2x2 − g(x)
12(x+ 1)

= lim
x→−1

4x− g′(x)
12

(27)

= lim
x→−1

4x− [x2 − g(x)/2]
12

− −4− [1− g(−1)/2]
12

= −1

3
. (28)

We conclude that the required limit is −1/3
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4.1.4 Part d

The Euler’s method recursion, with step-size 1/2, to the solution y = h(x) of the initial-
value problem

y′ = x2 − y

2
; (29)

y(0) = 2; (30)

is

x0 = 0; (31)
y0 = 2; (32)

xk = xk−1 +
1

2
; (33)

yk = yk−1 +
1

2

(
x2k−1 −

1

2
yk−1

)
. (34)

Therefore,

x1 = x0 +
1

2
=

1

2
, (35)

y1 = y0 +
1

2

(
x20 −

1

2
y0

)
= 2 +

1

2

(
02 − 1

2
· 2
)

=
3

2
; (36)

x2 = x1 +
1

2
=

1

2
+

1

2
= 1, (37)

y2 = y1 +
1

2

(
x21 −

1

2
y1

)
=

3

2
+

1

2

(
1

4
− 3

4

)
=

5

4
; (38)

The required Euler’s method approximation to h(1) is thus h(1) ∼ 5

4
.

4.2 Solution 2

4.2.1 Part a

We have

d2y

dx2
= 2x− 1

2

(
x2 − 1

2
y

)
, (39)

as in 4.1.1, above. Note that we can continue this procedure, seeing thus that y possesses
derivatives of all orders throughout its domain.
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4.2.2 Part b

There is a local maximum at (−2, 8), as in 4.1.2 above.

4.2.3 Part c

We now know that

g(−1) = 2; (40)

g′(−1) = (−1)2 − 1

2
g(−1) = 0; (41)

g′′(−1) = 2(−1)− 1

2
g′(−1) = −2. (42)

Thus, by Taylor’s Theorem and our earlier observation regarding higher order deriva-
tives, there is a function r, defined on some open interval centered at x = −1, continuous
at x = −1, and such that

g(x) = g(−1) + g′(−1)(x+ 1) +
1

2
g′′(−1)(x+ 1)2 + r(x)(x+ 1)3 (43)

= 2− (x+ 1)2 + r(x)(x+ 1)3. (44)

So

lim
x→−1

g(x)− 2

3(x+ 1)2
= lim

x→−1

[2− (x+ 1)2 + r(x)(x+ 1)3]− 2

(x+ 1)2
(45)

= lim
x→−1

[r(x)(x+ 1)− 1]�����
(x+ 1)2

3�����
(x+ 1)2

(46)

=
1

3
lim
x→−1

[r(x)(x+ 1)− 1] = −1

3
. (47)

4.2.4 Part d

h(1) ∼ 5/4, as in 4.1.4, above.

4.3 Solution 3

4.3.1 Part a

We have
d2y

dx2
= 2x− 1

2

(
x2 − 1

2
y

)
, (48)
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as in 4.1.1, above. Note that we can continue this procedure, seeing thus that y possesses
derivatives of all orders throughout its domain.

4.3.2 Part b

If y = f(x) gives a solution to the initial value problem

y′ = x2 − y

2
; (49)

y(−2) = 8, (50)

then

f ′(x) +
1

2
f(x) = x2; (51)

ex/2f ′(x) +
1

2
ex/2f(x) = x2ex/2; (52)

d

dx

[
ex/2f(x)

]
= x2ex/2.. (53)

so that ∫ x

−2

d

dξ

[
eξ/2f(ξ)

]
dξ =

∫ x

−2
ξ2eξ/2 dξ. (54)

Integrating by parts twice in succession we find that∫
x2ex/2 dx = 2x2ex/2 − 8xex/2 + 16ex/2. (55)

From (53) and (55). it now follows that we can rewrite the equation∫ x

−2

d

dξ

[
eξ/2f(ξ)

]
dξ =

∫ x

−2
ξ2eξ/2 dξ (56)

as

eξ/2f(ξ)

∣∣∣∣x
−2

=
(
2ξ2eξ/2 − 8ξeξ/2 + 16eξ/2

) ∣∣∣∣x
−2
, (57)

whence

ex/2f(x)− e−1f(−2) =
(
2x2ex/2 − 8xex/2 + 16ex/2

)
− 40e−1. (58)
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But f(−2) = 8, so solving the latter equation for f(x) yields

f(x) = 2x2 − 8x+ 16− 32e−1−x/2. (59)

If follows, now, that

f ′(x) = 4x− 8 + 16e−1−x/2, and (60)

f ′′(x) = 4− 8e−1−x/2. (61)

Thus, f ′(−2) = 0 and f ′′(−2) = −4. By the Second Derivative Test, f has a local maximum
at x = −2.

4.3.3 Part c

Repeating the solution of the initial value problem above with the initial value g(−1) = 2,
we find that

g(x) = 2x2 − 8x+ 16− 24e−1−x/2. (62)

Thus,

lim
x→−1

g(x)− 1

3(x+ 1)2
= lim

x→−1

2x2 − 8x+ 14− 24e−1−x/2

3(x+ 1)2
. (63)

It is easily checked that l’Hôpital’s rule applies twice in succession, giving

lim
x→−1

2x2 − 8x+ 14− 24e−1−x/2

3(x+ 1)2
= lim

x→−1

4x− 8 + 12e−1−x/2

6(x+ 1)
(64)

= lim
x→−1

4− 6e−1−x/2

6
= −1

3
. (65)

4.3.4 Part d

h(1) ∼ 5/4, as in 4.1.4, above.
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5 Problem 5

5.1 Part a

The average value of the funnel’s radius is

1

10− 0

∫ 10

0

3 + h2

20
dh =

3

200

∫ 10

0
dh+

1

200

∫ 10

0
h2 dh (66)

=
3

200
· 10 + 1

200
· 1000

3
(67)

=
3

20
+

5

3
=

109

60
. (68)

The average value of the radius is
109

60
inches.

5.2 Part b

The volume, V , of the funnel is

V = π

∫ 10

0
[r(h)]2 dh (69)

=
π

400

∫ 10

0
(3 + h2)2 dh (70)

=
π

400

∫ 10

0

(
9 + 6h2 + h4

)
dh (71)

=
π

400

(
9h+ 2h3 +

1

5
h5
) ∣∣∣∣10

0

(72)

=
π

400
(90 + 2000 + 20000) =

2209

40
π in3. (73)

5.3 Part c

The radius r(t) and the height y(t) are related by the equation

r(t) =
1

20

(
3 + [y(t)]2

)
, (74)

so that

r′(t) =
1

10
y(t)y′(t), (75)
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or

y′(t) = 10
r′(t)

y(t)
. (76)

Thus, at the instant when r′(t0) = −1/5 in/sec and y(t0) = 3 in, the height is changing at
the rate

y′(t0) =
10

3
·
(
−1

5

)
= −2

2
in/sec. (77)

6 Problem 6

6.1 Part a

We have

f(1)

0!
= 1, (78)

f ′(1)

1!
= −1

2
, (79)

f ′′(1)

2!
= (−1)2 · 1!

2 · 23
=

1

8
, (80)

f (3)(−1)
3!

= (−1)3 2

6 · 23
= − 1

24
, (81)

... (82)

f (n)(−1)
n!

= (−1)n (n− 1)!

n! · 2n
=

(−1)n

n2n
, (83)

whence

f(x) = 1 +

∞∑
n=1

(−1)n

n2n
(x− 1)n (84)

= 1− 1

2
(x− 1) +

1

8
(x− 1)2 − 1

24
(x− 1)3 + · · ·+ (−1)n

n2n
(x− 1)n + · · · . (85)

6.2 Part b

If the radius of convergence for this series is 2, then, being centered at x = 1, it converges
for all values of x in the interval (1 − 2, 1 + 2) = (−1, 3), and it remains to check the
endpoints of this interval for convergence.
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If x = 3, the series becomes

1 +

∞∑
n=1

(−1)n

n2n
2n = 1 +

∞∑
n=1

(−1)n

n
. (86)

Except for the first term, this is the negative of the alternating harmonic series, which
converges.

If x = −1, the series becomes

1 +

∞∑
n=1

(−1)n

n2n
(−2)n = 1 +

∞∑
n=1

1

n
, (87)

and (again, except for the first term) this is the harmonic series—which diverges.

The interval of convergence is thus the interval (−1, 3].

6.3 Part c

We have

f(1.2) = 1 +
∞∑
n=1

(−1)n

n2n
(0.2)n (88)

= 1− 1

2
(0.2) +

1

8
(0.04)− 1

24
(0.008) + · · · (89)

Taking the first three terms of this series gives

f(1.2) ∼ 1− 0.1 + 0.005 = 0.905. (90)

6.4 Part d

The magnitude of the error that results from truncating an alternating series is bounded
by the the magnitude of the first truncated term, and in this case, that is

0.008

24
=

1

3000
<

1

1000
. (91)
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Note: The series is easily summed. From (84), we have f(1) = 1 and, for x inside the
interval of convergence,

f ′(x) =
∞∑
n=1

(−1)n

2n
(x− 1)n−1 (92)

= −1

2

∞∑
n=1

(
−x− 1

2

)n−1
. (93)

This is a geometric series with common ratio −x− 1

2
. It converges when −1 < x < 3, and

gives in that interval

f ′(x) = −1

2

(
1

1 + (x−1)
2

)
(94)

= − 1

x+ 1
(95)

Thus, f(x) = C − ln(1 + x) for some constant C. But f(1) = 1 so C = 1 + ln 2 and

f(x) = 1 + ln 2− ln(1 + x). (96)

From this, we see easily in Part d that f(1.2) ∼ 0.90469, leading to another verification
that the error in the approximation of Part c must be less than 0.001.
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