AP Calculus 2016 BC FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

May 10, 2016

1 Problem 1

1.1 Part a

We estimate $R^{\prime}(2)$ as

$$
\begin{equation*}
R^{\prime}(2) \sim \frac{R(3)-R(1)}{3-1}=\frac{950-1190}{2}=-120 \text { liters } / \text { hour }^{2} . \tag{1}
\end{equation*}
$$

1.2 Part b

To estimate the total amount of water removed from the tank during the time interval $[0,8]$ with a left Riemann sum having four sub-intervals, we may write

$$
\begin{align*}
R(0) \cdot[1-0]+ & R(1) \cdot[3-1]+R(3) \cdot[6-3]+R(6) \cdot[8-6]= \tag{2}\\
& 1340 \cdot 1+1190 \cdot(3-1)+950 \cdot(6-3)+740 \cdot(8-6)=8050 . \tag{3}
\end{align*}
$$

The function R is decreasing, so the left-hand endpoint of each subinterval gives the maximum value of R on that subinterval. Thus, a left-hand Riemann sum gives an overestimate of the integral.

1.3 Part c

The total amount of water in the tank at time t is

$$
\begin{equation*}
50000+\int_{0}^{t}[W(\tau)-R(\tau)] d \tau=50000+2000 \int_{0}^{t} e^{-\tau^{2} / 20} d \tau-\int_{0}^{t} R(\tau) d \tau \tag{4}
\end{equation*}
$$

or, when $t=8$,

$$
\begin{equation*}
\sim 50000+2000 \int_{0}^{8} e^{-\tau^{2} / 20} d \tau-8050 . \tag{5}
\end{equation*}
$$

Thus, after carrying out the remaining integration numerically, we find that the amount of water in the tank when $t=8$ is approximately 49786.19532 liters. To the nearest liter, this is 49786 liters.

1.4 Part d

We consider the function $F(t)=W(t)-R(t)$. The functions W and R are both continuous on the interval $[0,8]$, so the function F is also continuous on that interval. We have $F(0)=$ 660 , while $F(8) \sim-618.5$ to the nearest tenth. Thus, $F(0)>0$ while $F(8)<0$, and, by the Intermediate Value Propery of continouus functions, there is a point ξ somewhere in the interval $(0,8)$ for which $F(\xi)=0$. For this ξ we have $W(\xi)-R(\xi)$, so the answer to the question is "Yes."

2 Problem 2

2.1 Part a

The graph gives $y(3)=-1 / 2$. We obtain $x(3)$ from

$$
\begin{align*}
& x(t)=x(0)+\int_{0}^{t} x^{\prime}(\tau) d \tau, \text { whence } \tag{6}\\
& x(3)=5+\int_{0}^{t}\left[\tau^{2}+\sin 3 \tau^{2}\right] d \tau \sim 14.37704, \tag{7}
\end{align*}
$$

via numerical integration. Thus, the position of the particle at time $t=3$ is approximately (14.37704, -0.5).

2.2 Part b

The slope of the line tangent to the curve $(x(t), y(t))$ at the point where $t=3$ is

$$
\begin{align*}
\left.\frac{y^{\prime}(t)}{x^{\prime}(t)}\right|_{t=3} & =\left.\frac{y^{\prime}(t)}{t^{2}+\sin 3 t^{2}}\right|_{t=3} \tag{8}\\
& =\frac{1 / 2}{9+\sin 27} \sim 0.05022 \tag{9}
\end{align*}
$$

where we have read $y^{\prime}(3)$ from the given graph.

2.3 Part c

The speed $\sigma(t)$, of the particle at time t is

$$
\begin{equation*}
\sigma(t)=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} \tag{10}
\end{equation*}
$$

so speed at time $t=3$ is

$$
\begin{equation*}
\sigma(3)=\sqrt{[9+\sin 27]^{2}+(1 / 4)} \sim 9.96892 \tag{11}
\end{equation*}
$$

2.4 Part d

The total distance, s traveled over the time interval $[0,2]$ is

$$
\begin{align*}
s & =\int_{0}^{2} \sigma(\tau) d \tau=\int_{0}^{2} \sqrt{\left[x^{\prime}(\tau)\right]^{2}+\left[y^{\prime}(\tau]^{2}\right.} d \tau \tag{12}\\
& =\int_{0}^{1} \sqrt{\left[\tau^{2}+\sin 3 \tau^{2}\right]^{2}+(-2)^{2}} d \tau+\int_{1}^{2}\left[\tau^{2}+\sin 3 \tau^{2}\right] d \tau \tag{13}\\
& \sim 2.23787+2.11200=4.34987 \tag{14}
\end{align*}
$$

Note: It must be noted, in the course of these numerical integrations, that the second integral is over the interval $[1,2]$, where the graph gives $y^{\prime}(\tau) \equiv 0$. For $1 \leq t \leq 2$, we then have

$$
\begin{equation*}
\left|\sin 3 t^{2}\right| \leq 1 \leq t^{2} \tag{15}
\end{equation*}
$$

so that $t^{2}+\sin 3 t^{2} \geq 0$ when $1 \leq t \leq 2$. This means that, on the interval $[1,2]$, we may replace $\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}}=\sqrt{\left[t^{2}+\sin 3 t^{2}\right]^{2}+0}$ with $t^{2}+\sin 3 t^{2}$-as we have done. In my opinion, a solution that fails to make this observation explicitly is incomplete.

3 Problem 3

For a graph of g, see Figure 1.

Figure 1: Problem 3, Graph of g

3.1 Part a

If $g(x)=\int_{2}^{x} f(t) d t$ then, by the Fundamental Theorem of Calculus, $g^{\prime}(x)=f(x)$. While $g^{\prime}(10)=-$, we see that $g^{\prime}(x)$ is negative for all values of x in some punctured neighborhood of $x=10$. Thus, by the First Derivative Test, g has neither a relative minimum nor a relative maximum at $x=10$.

3.2 Part b

Arguing again from the given graph, which is that of g^{\prime}, we see that g^{\prime} is increasing on an interval just to the left of $x=4$ but decreasing on an interval just to the right of $x=4$. Thus, g has an inflection point where $x=4$. (In fact, g is concave upward immediately to the left of $x=4$ and concave downward immediately to the right of $x=4$.)

3.3 Part c

The absolute minimum value must occur either at an endpoint of the interval or at a point where $g^{\prime}(x)$ undergoes a sign change from negative to positive as x increases. The only points that qualify are $x=-4, x=-2$, and $x=12$. Summing the areas of the appropriate
triangles (with appropriate signs), we see that $g(-4)=-4, g(-2)=-9$, and $g(12)=-4$. Thus, g has its absolute minimum at $x=-8$.

Similar reasoning shows that the absolute maximum of $g(x)$ can only be at $x=-4, x=6$, or $x=12$. But this makes $g(6)=8$ the absolute maximum. (We evaluated the other two possibilities in the preceding paragraph.)

3.4 Part d

On any interval of the form $[x, 2]$, with $-4 \leq x<2$, the area between the curve $y=f(x)$ and the x-axis, and lying above the x-axis, exceeds that below the x-axis. Thus guarantees that, for such $x, g(x)<0$.
On the other hand, on any interval of the form $[2, x]$, with $x>2$, the area of the region bounded by f and below the x-axis doesn't exceed that of the region above the x-axis unless $x>10$. This means that $g(x) \geq 0$ for $x \leq x \leq 10$, and $g(x)<0$ when $10<x$.

The desired intervals are $[-4,2]$ and $[10,12]$.

4 Problem 4

4.1 Solution 1

4.1.1 Part a

From the equation $\frac{d y}{d x}=x^{2}-\frac{1}{2} y$, we have

$$
\begin{align*}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right) \tag{16}\\
& =\frac{d}{d x}\left(x^{2}-\frac{1}{2} y\right) \tag{17}\\
& =2 x-\frac{1}{2} \frac{d y}{d x} \tag{18}\\
& =2 x-\frac{1}{2}\left(x^{2}-\frac{1}{2} y\right) . \tag{19}
\end{align*}
$$

4.1.2 Part b

At the point $(-2,8)$, we have

$$
\begin{align*}
& \left.\frac{d y}{d x}\right|_{(-2,8)}=(-2)^{2}-\frac{1}{2} \cdot 8=0, \text { and } \tag{20}\\
& \left.\frac{d^{2} y}{d x^{2}}\right|_{(-2,8)}=2(-2)-\frac{1}{2} \cdot 0=-4<0 . \tag{21}
\end{align*}
$$

By the Second Derivative Test, this curve has a local maximum at $(-2,8)$.

4.1.3 Part c

By the continuity of the solution of a differential equation, we have

$$
\begin{equation*}
\lim _{x \rightarrow-1}[g(x)-2]=g(-1)-2=0 \tag{22}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\lim _{x \rightarrow-1} 3(x+1)^{2}=0 \tag{23}
\end{equation*}
$$

We may therefore attempt to evaluate the limit by l'Hôpital's Rule. This gives

$$
\begin{equation*}
\lim _{x \rightarrow-1} \frac{g(x)-2}{3(x+1)^{2}}=\lim _{x \rightarrow-1} \frac{g^{\prime}(x)}{6(x+1)}, \tag{24}
\end{equation*}
$$

provided the latter limit exists.
But

$$
\begin{align*}
\lim _{x \rightarrow-1} \frac{g^{\prime}(x)}{6(x+1)} & =\lim _{x \rightarrow-1} \frac{x^{2}-g(x) / 2}{6(x+1)} \tag{25}\\
& =\lim _{x \rightarrow-1} \frac{2 x^{2}-g(x)}{12(x+1)} \tag{26}
\end{align*}
$$

Here, $2 x^{2}-g(x)=\left[2 x^{2}-2\right]+[2-g(x)] \rightarrow 0$ and $12(x+1) \rightarrow 0$ as $x \rightarrow-1$, so we may attempt l'Hôpital's Rule again. This gives

$$
\begin{align*}
\lim _{x \rightarrow-1} \frac{2 x^{2}-g(x)}{12(x+1)} & =\lim _{x \rightarrow-1} \frac{4 x-g^{\prime}(x)}{12} \tag{27}\\
& =\lim _{x \rightarrow-1} \frac{4 x-\left[x^{2}-g(x) / 2\right]}{12}-\frac{-4-[1-g(-1) / 2]}{12}=-\frac{1}{3} . \tag{28}
\end{align*}
$$

We conclude that the required limit is $-1 / 3$

4.1.4 Part d

The Euler's method recursion, with step-size $1 / 2$, to the solution $y=h(x)$ of the initialvalue problem

$$
\begin{align*}
y^{\prime} & =x^{2}-\frac{y}{2} \tag{29}\\
y(0) & =2 ; \tag{30}
\end{align*}
$$

is

$$
\begin{align*}
& x_{0}=0 \tag{31}\\
& y_{0}=2 \tag{32}\\
& x_{k}=x_{k-1}+\frac{1}{2} \tag{33}\\
& y_{k}=y_{k-1}+\frac{1}{2}\left(x_{k-1}^{2}-\frac{1}{2} y_{k-1}\right) . \tag{34}
\end{align*}
$$

Therefore,

$$
\begin{align*}
& x_{1}=x_{0}+\frac{1}{2}=\frac{1}{2}, \tag{35}\\
& y_{1}=y_{0}+\frac{1}{2}\left(x_{0}^{2}-\frac{1}{2} y_{0}\right)=2+\frac{1}{2}\left(0^{2}-\frac{1}{2} \cdot 2\right)=\frac{3}{2} ; \tag{36}\\
& x_{2}=x_{1}+\frac{1}{2}=\frac{1}{2}+\frac{1}{2}=1, \tag{37}\\
& y_{2}=y_{1}+\frac{1}{2}\left(x_{1}^{2}-\frac{1}{2} y_{1}\right)=\frac{3}{2}+\frac{1}{2}\left(\frac{1}{4}-\frac{3}{4}\right)=\frac{5}{4}, \tag{38}
\end{align*}
$$

The required Euler's method approximation to $h(1)$ is thus $h(1) \sim \frac{5}{4}$.

4.2 Solution 2

4.2.1 Part a

We have

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=2 x-\frac{1}{2}\left(x^{2}-\frac{1}{2} y\right), \tag{39}
\end{equation*}
$$

as in 4.1.1, above. Note that we can continue this procedure, seeing thus that y possesses derivatives of all orders throughout its domain.

4.2.2 Part b

There is a local maximum at $(-2,8)$, as in 4.1.2 above.

4.2.3 Part c

We now know that

$$
\begin{align*}
g(-1) & =2 \tag{40}\\
g^{\prime}(-1) & =(-1)^{2}-\frac{1}{2} g(-1)=0 \tag{41}\\
g^{\prime \prime}(-1) & =2(-1)-\frac{1}{2} g^{\prime}(-1)=-2 \tag{42}
\end{align*}
$$

Thus, by Taylor's Theorem and our earlier observation regarding higher order derivatives, there is a function r, defined on some open interval centered at $x=-1$, continuous at $x=-1$, and such that

$$
\begin{align*}
g(x) & =g(-1)+g^{\prime}(-1)(x+1)+\frac{1}{2} g^{\prime \prime}(-1)(x+1)^{2}+r(x)(x+1)^{3} \tag{43}\\
& =2-(x+1)^{2}+r(x)(x+1)^{3} . \tag{44}
\end{align*}
$$

So

$$
\begin{align*}
\lim _{x \rightarrow-1} \frac{g(x)-2}{3(x+1)^{2}} & =\lim _{x \rightarrow-1} \frac{\left[2-(x+1)^{2}+r(x)(x+1)^{3}\right]-2}{(x+1)^{2}} \tag{45}\\
& =\lim _{x \rightarrow-1} \frac{[r(x)(x+1)-1](x+1)^{2}}{3(x+1)^{2}} \tag{46}\\
& =\frac{1}{3} \lim _{x \rightarrow-1}[r(x)(x+1)-1]=-\frac{1}{3} . \tag{47}
\end{align*}
$$

4.2.4 Part d

$h(1) \sim 5 / 4$, as in 4.1.4, above.

4.3 Solution 3

4.3.1 Part a

We have

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=2 x-\frac{1}{2}\left(x^{2}-\frac{1}{2} y\right), \tag{48}
\end{equation*}
$$

as in 4.1.1, above. Note that we can continue this procedure, seeing thus that y possesses derivatives of all orders throughout its domain.

4.3.2 Part b

If $y=f(x)$ gives a solution to the initial value problem

$$
\begin{align*}
y^{\prime} & =x^{2}-\frac{y}{2} ; \tag{49}\\
y(-2) & =8, \tag{50}
\end{align*}
$$

then

$$
\begin{align*}
f^{\prime}(x)+\frac{1}{2} f(x) & =x^{2} ; \tag{51}\\
e^{x / 2} f^{\prime}(x)+\frac{1}{2} e^{x / 2} f(x) & =x^{2} e^{x / 2} ; \tag{52}\\
\frac{d}{d x}\left[e^{x / 2} f(x)\right] & =x^{2} e^{x / 2} . . \tag{53}
\end{align*}
$$

so that

$$
\begin{equation*}
\int_{-2}^{x} \frac{d}{d \xi}\left[e^{\xi / 2} f(\xi)\right] d \xi=\int_{-2}^{x} \xi^{2} e^{\xi / 2} d \xi \tag{54}
\end{equation*}
$$

Integrating by parts twice in succession we find that

$$
\begin{equation*}
\int x^{2} e^{x / 2} d x=2 x^{2} e^{x / 2}-8 x e^{x / 2}+16 e^{x / 2} \tag{55}
\end{equation*}
$$

From (53) and (55). it now follows that we can rewrite the equation

$$
\begin{equation*}
\int_{-2}^{x} \frac{d}{d \xi}\left[e^{\xi / 2} f(\xi)\right] d \xi=\int_{-2}^{x} \xi^{2} e^{\xi / 2} d \xi \tag{56}
\end{equation*}
$$

as

$$
\begin{equation*}
\left.e^{\xi / 2} f(\xi)\right|_{-2} ^{x}=\left.\left(2 \xi^{2} e^{\xi / 2}-8 \xi e^{\xi / 2}+16 e^{\xi / 2}\right)\right|_{-2} ^{x} \tag{57}
\end{equation*}
$$

whence

$$
\begin{equation*}
e^{x / 2} f(x)-e^{-1} f(-2)=\left(2 x^{2} e^{x / 2}-8 x e^{x / 2}+16 e^{x / 2}\right)-40 e^{-1} \tag{58}
\end{equation*}
$$

But $f(-2)=8$, so solving the latter equation for $f(x)$ yields

$$
\begin{equation*}
f(x)=2 x^{2}-8 x+16-32 e^{-1-x / 2} \tag{59}
\end{equation*}
$$

If follows, now, that

$$
\begin{align*}
f^{\prime}(x) & =4 x-8+16 e^{-1-x / 2}, \text { and } \tag{60}\\
f^{\prime \prime}(x) & =4-8 e^{-1-x / 2} \tag{61}
\end{align*}
$$

Thus, $f^{\prime}(-2)=0$ and $f^{\prime \prime}(-2)=-4$. By the Second Derivative Test, f has a local maximum at $x=-2$.

4.3.3 Part c

Repeating the solution of the initial value problem above with the initial value $g(-1)=2$, we find that

$$
\begin{equation*}
g(x)=2 x^{2}-8 x+16-24 e^{-1-x / 2} \tag{62}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\lim _{x \rightarrow-1} \frac{g(x)-1}{3(x+1)^{2}}=\lim _{x \rightarrow-1} \frac{2 x^{2}-8 x+14-24 e^{-1-x / 2}}{3(x+1)^{2}} \tag{63}
\end{equation*}
$$

It is easily checked that l'Hôpital's rule applies twice in succession, giving

$$
\begin{align*}
\lim _{x \rightarrow-1} \frac{2 x^{2}-8 x+14-24 e^{-1-x / 2}}{3(x+1)^{2}} & =\lim _{x \rightarrow-1} \frac{4 x-8+12 e^{-1-x / 2}}{6(x+1)} \tag{64}\\
& =\lim _{x \rightarrow-1} \frac{4-6 e^{-1-x / 2}}{6}=-\frac{1}{3} \tag{65}
\end{align*}
$$

4.3.4 Part d

$h(1) \sim 5 / 4$, as in 4.1.4, above.

5 Problem 5

5.1 Part a

The average value of the funnel's radius is

$$
\begin{align*}
\frac{1}{10-0} \int_{0}^{10} \frac{3+h^{2}}{20} d h & =\frac{3}{200} \int_{0}^{10} d h+\frac{1}{200} \int_{0}^{10} h^{2} d h \tag{66}\\
& =\frac{3}{200} \cdot 10+\frac{1}{200} \cdot \frac{1000}{3} \tag{67}\\
& =\frac{3}{20}+\frac{5}{3}=\frac{109}{60} . \tag{68}
\end{align*}
$$

The average value of the radius is $\frac{109}{60}$ inches.

5.2 Part b

The volume, V, of the funnel is

$$
\begin{align*}
V & =\pi \int_{0}^{10}[r(h)]^{2} d h \tag{69}\\
& =\frac{\pi}{400} \int_{0}^{10}\left(3+h^{2}\right)^{2} d h \tag{70}\\
& =\frac{\pi}{400} \int_{0}^{10}\left(9+6 h^{2}+h^{4}\right) d h \tag{71}\\
& =\left.\frac{\pi}{400}\left(9 h+2 h^{3}+\frac{1}{5} h^{5}\right)\right|_{0} ^{10} \tag{72}\\
& =\frac{\pi}{400}(90+2000+20000)=\frac{2209}{40} \pi \mathrm{in}^{3} . \tag{73}
\end{align*}
$$

5.3 Part c

The radius $r(t)$ and the height $y(t)$ are related by the equation

$$
\begin{equation*}
r(t)=\frac{1}{20}\left(3+[y(t)]^{2}\right), \tag{74}
\end{equation*}
$$

so that

$$
\begin{equation*}
r^{\prime}(t)=\frac{1}{10} y(t) y^{\prime}(t) \tag{75}
\end{equation*}
$$

or

$$
\begin{equation*}
y^{\prime}(t)=10 \frac{r^{\prime}(t)}{y(t)} \tag{76}
\end{equation*}
$$

Thus, at the instant when $r^{\prime}\left(t_{0}\right)=-1 / 5 \mathrm{in} / \mathrm{sec}$ and $y\left(t_{0}\right)=3 \mathrm{in}$, the height is changing at the rate

$$
\begin{equation*}
y^{\prime}\left(t_{0}\right)=\frac{10}{3} \cdot\left(-\frac{1}{5}\right)=-\frac{2}{2} \mathrm{in} / \mathrm{sec} . \tag{77}
\end{equation*}
$$

6 Problem 6

6.1 Part a

We have

$$
\begin{align*}
\frac{f(1)}{0!} & =1, \tag{78}\\
\frac{f^{\prime}(1)}{1!} & =-\frac{1}{2}, \tag{79}\\
\frac{f^{\prime \prime}(1)}{2!} & =(-1)^{2} \cdot \frac{1!}{2 \cdot 2^{3}}=\frac{1}{8}, \tag{80}\\
\frac{f^{(3)}(-1)}{3!} & =(-1)^{3} \frac{2}{6 \cdot 2^{3}}=-\frac{1}{24}, \tag{81}\\
& \vdots \tag{82}\\
\frac{f^{(n)}(-1)}{n!} & =(-1)^{n} \frac{(n-1)!}{n!\cdot 2^{n}}=\frac{(-1)^{n}}{n 2^{n}}, \tag{83}
\end{align*}
$$

whence

$$
\begin{align*}
f(x) & =1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 2^{n}}(x-1)^{n} \tag{84}\\
& =1-\frac{1}{2}(x-1)+\frac{1}{8}(x-1)^{2}-\frac{1}{24}(x-1)^{3}+\cdots+\frac{(-1)^{n}}{n 2^{n}}(x-1)^{n}+\cdots . \tag{85}
\end{align*}
$$

6.2 Part b

If the radius of convergence for this series is 2 , then, being centered at $x=1$, it converges for all values of x in the interval $(1-2,1+2)=(-1,3)$, and it remains to check the endpoints of this interval for convergence.

If $x=3$, the series becomes

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 2^{n}} 2^{n}=1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \tag{86}
\end{equation*}
$$

Except for the first term, this is the negative of the alternating harmonic series, which converges.
If $x=-1$, the series becomes

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 2^{n}}(-2)^{n}=1+\sum_{n=1}^{\infty} \frac{1}{n}, \tag{87}
\end{equation*}
$$

and (again, except for the first term) this is the harmonic series-which diverges.
The interval of convergence is thus the interval $(-1,3]$.

6.3 Part c

We have

$$
\begin{align*}
f(1.2) & =1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 2^{n}}(0.2)^{n} \tag{88}\\
& =1-\frac{1}{2}(0.2)+\frac{1}{8}(0.04)-\frac{1}{24}(0.008)+\cdots \tag{89}
\end{align*}
$$

Taking the first three terms of this series gives

$$
\begin{equation*}
f(1.2) \sim 1-0.1+0.005=0.905 \tag{90}
\end{equation*}
$$

6.4 Part d

The magnitude of the error that results from truncating an alternating series is bounded by the the magnitude of the first truncated term, and in this case, that is

$$
\begin{equation*}
\frac{0.008}{24}=\frac{1}{3000}<\frac{1}{1000} \tag{91}
\end{equation*}
$$

Note: The series is easily summed. From (84), we have $f(1)=1$ and, for x inside the interval of convergence,

$$
\begin{align*}
f^{\prime}(x) & =\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}}(x-1)^{n-1} \tag{92}\\
& =-\frac{1}{2} \sum_{n=1}^{\infty}\left(-\frac{x-1}{2}\right)^{n-1} . \tag{93}
\end{align*}
$$

This is a geometric series with common ratio $-\frac{x-1}{2}$. It converges when $-1<x<3$, and gives in that interval

$$
\begin{align*}
f^{\prime}(x) & =-\frac{1}{2}\left(\frac{1}{1+\frac{(x-1)}{2}}\right) \tag{94}\\
& =-\frac{1}{x+1} \tag{95}
\end{align*}
$$

Thus, $f(x)=C-\ln (1+x)$ for some constant C. But $f(1)=1$ so $C=1+\ln 2$ and

$$
\begin{equation*}
f(x)=1+\ln 2-\ln (1+x) . \tag{96}
\end{equation*}
$$

From this, we see easily in Part d that $f(1.2) \sim 0.90469$, leading to another verification that the error in the approximation of Part c must be less than 0.001 .

