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1 Problem 1

1.1 Part a

The approximation with a left-hand sum using the intervals given is

50.3 · 2 + 14.4 · 3 + 6.5 · 5 = 176.3. (1)

1.2 Part b

We are given that the area of cross-sections decreases as h increases, so the cross-section at
the left-hand endpoint of each interval has maximal area for the cross-sections associated
with that interval. Thus, the left-hand sum overestimates the volume of the tank. The
required approximate volume is 176.3 cubic feet.

1.3 Part c

The volume, in cubic feet, of the tank is
∫ 10

0

50.3

e0.2h + h
dh. Numerical integration gives an

approximate volume of 101.325 cubic feet for the tank.
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1.4 Part d

Let H(t) denote the height of water in the tank at time t. Then the volume, in cubic feet,
of water in the tank at time t is

V (t) =

∫ H(t)

0

50.3

e0.2h + h
dh (2)

Thus, by the Fundamental Theorem of Calculus and the Chain Rule,

V ′(t) =
50.3

e0.2H(t) +H(t)
H ′(t), so that (3)

V ′(t0) = 50.3 +
50.3

e0.2H(t0) +H(t0)
H ′(t0), (4)

where t0 is the instant when the depth of water in the tank is five feet. Thus,

V ′(t0) =
50.3

e+ 5
· 0.26 ∼ 1.694 cubic feet per minute. (5)

2 Problem 2

2.1 Part a

The required area, AR is given by

AR =
1

2

∫ π/2

0
[f(θ)]2 dθ (6)

=
1

2

∫ π/2

0
[1 + sin θ cos 2θ]2 dθ (7)

Although the necessary anti-derivative can be found by elementary techniques, the cal-
culation requires a significant amount of time; and this is a calculator-active problem.
Numerical integration gives AR ∼ 0.648.

Note: For the curious:∫
[1 + sin θ cos 2θ]2 dθ =

∫
[1 + 2 sin θ cos 2θ + sin2 θ cos2 2θ] dθ. (8)

We break this into pieces. The first is easy. The second is∫
sin θ cos 2θ dθ =

∫
sin θ

(
2 cos2 θ − 1

)
dθ (9)

= 2

∫
cos2 θ sin θ dθ −

∫
sin θ dθ = −2

3
cos3 θ + cos θ (10)
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The third is∫
sin2 θ cos2 2θ dθ =

1

2

∫
(1− cos 2θ) cos2 2θ dθ (11)

=
1

2

∫ (
cos2 2θ − cos3 2θ

)
dθ (12)

=
1

4

∫
(1 + cos 4θ) dθ − 1

2

∫ (
1− sin2 2θ

)
cos 2θ dθ (13)

=
1

4
θ +

1

16
sin 4θ − 1

4
sin 2θ +

1

12
sin3 2θ (14)

2.2 Part b

The ray θ = k divides the region S into two regions of equal area when∫ k

0
cos2 θ dθ =

∫ π/2

k
cos2 θ dθ. (15)

In fact, there are other possibilities. Either of the integrals of (15) may be equated to the

integral
1

2

∫ π/2

0
cos2 θ dθ.

(For the curious: Numerical solution of equation (15), which is not required, yields k ∼
0.4158556.)

2.3 Part c

The distance w(θ) from (f(θ), θ) and (g(θ), θ) is measured along the ray θ, and, for all θ in
the interval [0, π/2], we have g(θ) ≥ f(θ). Therefore,

w(θ) = g(θ)− f(θ) (16)
= 2 cos θ − 1− sin θ cos 2θ. (17)

The average value, wA, of w(θ) over [0, π/2] is thus given by

wA =
2

π

∫ π/2

0
[g(θ)− f(θ)] dθ (18)

=
2

π

∫ π/2

0
[2 cos θ − 1− sin θ cos 2θ] dθ. (19)
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Integrating numerically again, we obtain wA ∼ 0.485446.

wA ∼ 0.485. (20)

(For the curious: The antiderivative is again accessible by elementary techniques:∫
[2 cos θ − 1− sin θ cos 2θ] dθ =

1

6
cos 3θ + 2 sin θ − 1

2
cos θ − θ. (21)

This yields

wA =
14

3π
− 1, (22)

but, again, at the expense of time.)

2.4 Part d

We must solve the equation

wA = w(θA), (23)

for θA, or

0.485446 = 2 cos θA − 1− sin θA cos 2θA. (24)

Numerical solution of this equation gives θA ∼ 0.581859, or θA ∼ 0.582. We have

w′(θ) = −2 sin θ − cos θ cos 2θ + 2 sin θ sin 2θ, (25)

whence

w′(θA) ∼ −0.581859 < 0. (26)

We conclude that w(θ) is decreasing near θ = θA because w′ is continuous there and
w′(θA) < 0.

Remark: The notions of “increasing [decreasing] at a point” are not defined in most ele-
mentary calculus texts. Strictly speaking, the observation that w′ is continuous at θ = θA
is necessary to justify the conclusion that w is decreasing on some interval centered at
θ = θA. It is, in fact, possible to give examples of functions ϕwhich have the property that
for some value x0, ϕ(x0) < 0 but ϕ is not a decreasing function on any interval, however
small, centered at x0. However, the readers generally disregard this technicality.)

4



3 Problem 3

3.1 Part a

By the Fundamental Theorem of Calculus,
∫ −2
−6

f ′(x) dx = f(−2) − f(−6) = 7 − f(−6).

But the value of this integral is the area of a triangle whose base is four and whose altitude

is two, so 7−f(−6) = 4, and f(−6) = 3. Similarly,
∫ 5

−2
f ′(x) dx = f(5)−7, while the value

of this integral is the area of a triangle of base three, altitude two, less the area of a half
disk of radius two. Hence, f(5) = 7 + 3− 2π = 10− 2π.

3.2 Part b

The function f is increasing on the closures of those intervals where f ′ is positive, or on
[−6,−2] and on [2, 5].

3.3 Part c

The absolute minimum for f on [−6, 5] must occur either at an endpoint or at a critical
point where the derivative changes sign from negative to positive. Thus, the only possi-
bilities are x = −6, x = 2, and x = 5. We already (see Part a, above) have f(−6) = 3 and
f(5) = 10 − 2π, which latter is about 3.717, so we need only calculate f(2). But f(2) is
less than f(5) by the area of a triangle whose base is three and whose altitude it two, so
f(2) = 7 − 2π ∼ 0.717. Now 7 − 2π < 3 < 10 − 2π, so the absolute minimum we seek is
f(2) = 7− 2π.

3.4 Part d

In the vicinity of x = −5, the graph of f ′ is a line whose slope is −1/2, so f ′′(−5) = −1/2.
Immediately to the left of x = 3, the graph of f ′ is given by a straight line of slope 2, so
the left-hand derivative, f ′′−(3) of f ′ at x = 3 must be 2. Immediately to the right of x = 3,
the graph of f ′ is given by a line of slope −1, so the right-hand derivative, f ′′+(3), of f ′ at
x = 3 must be given by f ′′+(3) = −1. The one-sided derivatives of f ′ at x = 3 are different,
so f ′′(3) doesn’t exist.
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4 Problem 4

4.1 Part a

We have 4H ′(t) = 27−H(t); H(0) = 91. Thus,

H ′(0) =
27− 91

4
= −16, (27)

and an equation for the tangent line at (0, H(0)) isH = 91−16t. Setting t = 3 in this equa-
tion for the tangent line, we obtain the approximationH = 43 for the value ofH(3).

4.2 Part b

Differentiating the original equation, we obtain H ′′(t) = −H ′(t)/4. Substituting for H ′(t)
then gives

H ′′(t) = −1

4
· 27−H

4
=
H − 27

16
. (28)

Thus, H ′′(0) = (91 − 27)/16 = 4 > 0. This means that the solution curve lies above its
tangent line near t = 0, so we expect our estimate to be an underestimate.

4.3 Part c

If G′(t) = −[G(t)− 27]2/3 with G(0) = 91, then

G′(t)

[G(t)− 27]3/2
= −1, (29)

and (G(t) − 27) > 0 when t is near t = 0 because G—being a solution to a differen-
tial equation—must be a continuous function. For such values of t, we may therefore
write ∫ t

0

G′(τ)

[G(τ)− 27]2/3
dτ = −

∫ t

0
dτ, (30)

so that

3[G(t)− 27]1/3 − 3[G(0)− 27]1/3 = −t, (31)
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or

3[G(t)− 27]1/3 = 12− t. (32)

From this it follows that

G(t) =
1

27
(2457− 432t+ 36t2 − t3) (33)

Thus, G(3) = 54, and the internal temperature of the potato at t = 3 is, according to this
model, 54 degrees Celsius.

5 Problem 5

5.1 Part a

From

f(x) =
3

2x2 − 7x+ 5
, (34)

we obtain

f ′(x) = − 3(4x− 7)

(2x2 − 7x+ 5)2
. (35)

The slope of the tangent line at x = 3 is

f ′(3) = − 3(4 · 3− 7)

(2 · 32 − 7 · 3 + 5)2
= −15

4
. (36)

5.2 Part b

The only critical point for f in (1, 5/2) is at x = 7/4, because that is the only point in the
interval where f ′(x) = 0 or f ′(x) is undefined. The denominator of f ′ has zeros only at the
points x = 1 and x = 5/2, by the Quadratic Formula. Its denominator, being the square
of a non-zero quantity, is positive on (1, 5/2), the sign of f ′(x), because of the minus sign
in front of the fraction, is the opposite of the sign of its numerator. Thus, f ′(x) > 0 on
(1, 7/4), while f ′(x) < 0 on (7/4, 5/2) ∪ (5/2,∞). It follows by the First Derivative Test
that f has a relative maximum at x = 7/4.
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5.3 Part c

We have ∫ ∞
5

f(x) dx = lim
T→∞

∫ T

5
f(x) dx, (37)

provided that the limit exists. Thus, we write∫ ∞
5

f(x) dx = lim
T→∞

∫ T

5

[
2

2x− 5
− 1

x− 1

]
dx (38)

= lim
T→∞

[ln(2x− 5)− ln(x− 1)]

∣∣∣∣T
5

(39)

= lim
T→∞

ln

(
2x− 5

x− 1

) ∣∣∣∣T
5

(40)

= lim
T→∞

[
ln

2− 5/T

1− 1/T
− ln

5

4

]
= ln

8

5
, (41)

and the improper integral converges to ln(5/8).

5.4 Part d

The function f(x) = 3/[(2x − 5)(x − 1)] is positive on (5,∞) because both of the factors
in its denominator are positive there. We have seen in Part b, above, that f ′(x) < 0 on
(5/2,∞), so f is a decreasing function on [5,∞). We have seen in Part c, above, that∫∞
5 f(x) dx is a convergent improper integral. The Integral Test assures us that if there is

a positive integer M such that

1. f is a continuous function on [M,∞),

2. f is a decreasing function on [M,∞), and

3. the improper integral
∫∞
M f(x) dx converges,

then the series
∑∞

M f(n) converges. We conclude that
∞∑
n=5

3

2n2 − 7n+ 5

converges.

Note: The convergence of this series can also be shown by using the convergent series∑
n−2 and the Comparison-Limit Test, or by using the convergent series

∑
3/(2n2) and

the Comparison Test.
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6 Problem 6

6.1 Part a

From what is given, we find that

f(0) = 0; (42)
f ′(0) = 1; (43)

f ′′(0) = f (1+1)(0) = (−1) · f ′(0) = −1; (44)

f (3)(0) = f (2+1)(0) = (−2) · f (2)(0) = 2; (45)

f (4)(0) = f (3+1)(0) = (−3) · f (3)(0) = −6, (46)

and, by an easy induction,

f (n)(0) = (−1)n−1(n− 1)! when n ≥ 1. (47)

The coefficient an of the Maclaurin series for f is given by

an =
f (n)(0)

n!
, so (48)

a0 = 0; (49)
a1 = 1; (50)

a2 =
−1
2!

= −1

2
; (51)

a3 =
2

3!
=

1

3
; (52)

a4 =
−6
4!

= −1

4
, (53)

and, continuing inductively,

an = (−1)n−1 1
n

(54)

The desired first four non-zero terms of the Maclaurin series for f are therefore

x− x2

2
+
x3

3
− x4

4
,

and the general term is (−1)n−1x
n

n
, n = 1, 2, . . ..

9



6.2 Part b

When x = 1, we have

∞∑
n=1

(−1)n−1x
n

n
= 1− 1

2
+

1

3
− 1

4
+ · · · , (55)

which is the alternating harmonic series—a convergent series.

However, when x = 1,

∞∑
n=1

∣∣∣∣(−1)n−1xnn
∣∣∣∣ = 1 +

1

2
+

1

3
+

1

4
+ · · · , (56)

and this is the divergent harmonic series. It follows that
∑∞

n=1(−1)n−1
xn

n is conditionally
convergent when x = 1.

6.3 Part c

If g(x) =
∫ x
0 f(t) dt, where

f(x) = x− x2

2
+
x3

3
− x4

4
+ · · ·+ (−1)n−1x

n

n
+ · · · , (57)

then, integrating term-by-term, we have

g(x) =

∫ x

0

[
t− t2

2
+
t3

3
− t4

4
+ · · ·+ (−1)n−1 t

n

n
+ · · ·

]
dt (58)

=
x2

2
− x3

6
+
x4

12
− x5

20
+ · · ·+ (−1)n−1 xn+1

n(n+ 1)
+ · · · , (59)

which gives the Maclaurin series for g. The convergence of the series for f on (−1, 1)
guarantees the convergence of the new series for g on (−1, 1).

6.4 Part d

We note first that, from Part c, above,

P4(x) =
x2

2
− x3

6
+
x4

12
. (60)
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Thus,

P4

(
1

2

)
=

1

8
− 1

48
+

1

192
=

7

64
. (61)

The alternating series bound is the magnitude of the first unused term from the series, or,
in this case, ∣∣∣∣(−1)3 (1/2)54 · 5

∣∣∣∣ = 1

640
. (62)

It follows that ∣∣∣∣P4

(
1

2

)
− g

(
1

2

)∣∣∣∣ = ∣∣∣∣ 764 − g
(
1

2

)∣∣∣∣ ≤ 1

640
<

1

500
. (63)

6.5 Addendum

The series given in this problem is easily summed. If

f(x) = x− x2

2
+
x3

3
− x4

4
+ · · ·+ (−1)n−1x

n

n
+ · · · =

∞∑
n=1

(−1)n−1x
n

n
(64)

for −1 < x < 1, then

f ′(x) =
∞∑
n=1

(−1)n−1xn−1 (65)

=
1

1 + x
, (66)

also on −1 < x < 1, because the series of (65) is geometric, with common ratio −x.
Integrating from 0 to x and using the observation that f(0) = 0, we find that

f(x) =

∫ x

0

dt

1 + t
= ln(1 + x). (67)

Now an easy integration by parts shows that

g(x) = (1 + x) ln(1 + x)− x. (68)

We have shown that P4(1/2) = 7/64 = 0.109375. From (68), we see that g(x) ∼ 0.1081977.
The magnitude of the difference between these two numbers is about 0.00118.
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