AP Calculus 2017 BC FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

May 18, 2017

1 Problem 1

1.1 Part a

The approximation with a left-hand sum using the intervals given is

$$
\begin{equation*}
50.3 \cdot 2+14.4 \cdot 3+6.5 \cdot 5=176.3 \tag{1}
\end{equation*}
$$

1.2 Part b

We are given that the area of cross-sections decreases as h increases, so the cross-section at the left-hand endpoint of each interval has maximal area for the cross-sections associated with that interval. Thus, the left-hand sum overestimates the volume of the tank. The required approximate volume is 176.3 cubic feet.

1.3 Part c

The volume, in cubic feet, of the tank is $\int_{0}^{10} \frac{50.3}{e^{0.2 h}+h} d h$. Numerical integration gives an approximate volume of 101.325 cubic feet for the tank.

1.4 Part d

Let $H(t)$ denote the height of water in the tank at time t. Then the volume, in cubic feet, of water in the tank at time t is

$$
\begin{equation*}
V(t)=\int_{0}^{H(t)} \frac{50.3}{e^{0.2 h}+h} d h \tag{2}
\end{equation*}
$$

Thus, by the Fundamental Theorem of Calculus and the Chain Rule,

$$
\begin{align*}
V^{\prime}(t) & =\frac{50.3}{e^{0.2 H(t)}+H(t)} H^{\prime}(t), \text { so that } \tag{3}\\
V^{\prime}\left(t_{0}\right) & =50.3+\frac{50.3}{e^{0.2 H\left(t_{0}\right)}+H\left(t_{0}\right)} H^{\prime}\left(t_{0}\right), \tag{4}
\end{align*}
$$

where t_{0} is the instant when the depth of water in the tank is five feet. Thus,

$$
\begin{equation*}
V^{\prime}\left(t_{0}\right)=\frac{50.3}{e+5} \cdot 0.26 \sim 1.694 \text { cubic feet per minute. } \tag{5}
\end{equation*}
$$

2 Problem 2

2.1 Part a

The required area, A_{R} is given by

$$
\begin{align*}
A_{R} & =\frac{1}{2} \int_{0}^{\pi / 2}[f(\theta)]^{2} d \theta \tag{6}\\
& =\frac{1}{2} \int_{0}^{\pi / 2}[1+\sin \theta \cos 2 \theta]^{2} d \theta \tag{7}
\end{align*}
$$

Although the necessary anti-derivative can be found by elementary techniques, the calculation requires a significant amount of time; and this is a calculator-active problem. Numerical integration gives $A_{R} \sim 0.648$.
Note: For the curious:

$$
\begin{equation*}
\int[1+\sin \theta \cos 2 \theta]^{2} d \theta=\int\left[1+2 \sin \theta \cos 2 \theta+\sin ^{2} \theta \cos ^{2} 2 \theta\right] d \theta \tag{8}
\end{equation*}
$$

We break this into pieces. The first is easy. The second is

$$
\begin{align*}
\int \sin \theta \cos 2 \theta d \theta & =\int \sin \theta\left(2 \cos ^{2} \theta-1\right) d \theta \tag{9}\\
& =2 \int \cos ^{2} \theta \sin \theta d \theta-\int \sin \theta d \theta=-\frac{2}{3} \cos ^{3} \theta+\cos \theta \tag{10}
\end{align*}
$$

The third is

$$
\begin{align*}
\int \sin ^{2} \theta \cos ^{2} 2 \theta d \theta & =\frac{1}{2} \int(1-\cos 2 \theta) \cos ^{2} 2 \theta d \theta \tag{11}\\
& =\frac{1}{2} \int\left(\cos ^{2} 2 \theta-\cos ^{3} 2 \theta\right) d \theta \tag{12}\\
& =\frac{1}{4} \int(1+\cos 4 \theta) d \theta-\frac{1}{2} \int\left(1-\sin ^{2} 2 \theta\right) \cos 2 \theta d \theta \tag{13}\\
& =\frac{1}{4} \theta+\frac{1}{16} \sin 4 \theta-\frac{1}{4} \sin 2 \theta+\frac{1}{12} \sin ^{3} 2 \theta \tag{14}
\end{align*}
$$

2.2 Part b

The ray $\theta=k$ divides the region S into two regions of equal area when

$$
\begin{equation*}
\int_{0}^{k} \cos ^{2} \theta d \theta=\int_{k}^{\pi / 2} \cos ^{2} \theta d \theta \tag{15}
\end{equation*}
$$

In fact, there are other possibilities. Either of the integrals of (15) may be equated to the integral $\frac{1}{2} \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta$.
(For the curious: Numerical solution of equation (15), which is not required, yields $k \sim$ 0.4158556 .)

2.3 Part c

The distance $w(\theta)$ from $(f(\theta), \theta)$ and $(g(\theta), \theta)$ is measured along the ray θ, and, for all θ in the interval $[0, \pi / 2]$, we have $g(\theta) \geq f(\theta)$. Therefore,

$$
\begin{align*}
w(\theta) & =g(\theta)-f(\theta) \tag{16}\\
& =2 \cos \theta-1-\sin \theta \cos 2 \theta \tag{17}
\end{align*}
$$

The average value, w_{A}, of $w(\theta)$ over $[0, \pi / 2]$ is thus given by

$$
\begin{align*}
w_{A} & =\frac{2}{\pi} \int_{0}^{\pi / 2}[g(\theta)-f(\theta)] d \theta \tag{18}\\
& =\frac{2}{\pi} \int_{0}^{\pi / 2}[2 \cos \theta-1-\sin \theta \cos 2 \theta] d \theta \tag{19}
\end{align*}
$$

Integrating numerically again, we obtain $w_{A} \sim 0.485446$.

$$
\begin{equation*}
w_{A} \sim 0.485 \tag{20}
\end{equation*}
$$

(For the curious: The antiderivative is again accessible by elementary techniques:

$$
\begin{equation*}
\int[2 \cos \theta-1-\sin \theta \cos 2 \theta] d \theta=\frac{1}{6} \cos 3 \theta+2 \sin \theta-\frac{1}{2} \cos \theta-\theta . \tag{21}
\end{equation*}
$$

This yields

$$
\begin{equation*}
w_{A}=\frac{14}{3 \pi}-1 \tag{22}
\end{equation*}
$$

but, again, at the expense of time.)

2.4 Part d

We must solve the equation

$$
\begin{equation*}
w_{A}=w\left(\theta_{A}\right) \tag{23}
\end{equation*}
$$

for θ_{A}, or

$$
\begin{equation*}
0.485446=2 \cos \theta_{A}-1-\sin \theta_{A} \cos 2 \theta_{A} . \tag{24}
\end{equation*}
$$

Numerical solution of this equation gives $\theta_{A} \sim 0.581859$, or $\theta_{A} \sim 0.582$. We have

$$
\begin{equation*}
w^{\prime}(\theta)=-2 \sin \theta-\cos \theta \cos 2 \theta+2 \sin \theta \sin 2 \theta \tag{25}
\end{equation*}
$$

whence

$$
\begin{equation*}
w^{\prime}\left(\theta_{A}\right) \sim-0.581859<0 \tag{26}
\end{equation*}
$$

We conclude that $w(\theta)$ is decreasing near $\theta=\theta_{A}$ because w^{\prime} is continuous there and $w^{\prime}\left(\theta_{A}\right)<0$.
Remark: The notions of "increasing [decreasing] at a point" are not defined in most elementary calculus texts. Strictly speaking, the observation that w^{\prime} is continuous at $\theta=\theta_{A}$ is necessary to justify the conclusion that w is decreasing on some interval centered at $\theta=\theta_{A}$. It is, in fact, possible to give examples of functions φ which have the property that for some value $x_{0}, \varphi\left(x_{0}\right)<0$ but φ is not a decreasing function on any interval, however small, centered at x_{0}. However, the readers generally disregard this technicality.)

3 Problem 3

3.1 Part a

By the Fundamental Theorem of Calculus, $\int_{-6}^{-2} f^{\prime}(x) d x=f(-2)-f(-6)=7-f(-6)$. But the value of this integral is the area of a triangle whose base is four and whose altitude is two, so $7-f(-6)=4$, and $f(-6)=3$. Similarly, $\int_{-2}^{5} f^{\prime}(x) d x=f(5)-7$, while the value of this integral is the area of a triangle of base three, altitude two, less the area of a half disk of radius two. Hence, $f(5)=7+3-2 \pi=10-2 \pi$.

3.2 Part b

The function f is increasing on the closures of those intervals where f^{\prime} is positive, or on $[-6,-2]$ and on $[2,5]$.

3.3 Part c

The absolute minimum for f on $[-6,5]$ must occur either at an endpoint or at a critical point where the derivative changes sign from negative to positive. Thus, the only possibilities are $x=-6, x=2$, and $x=5$. We already (see Part a, above) have $f(-6)=3$ and $f(5)=10-2 \pi$, which latter is about 3.717 , so we need only calculate $f(2)$. But $f(2)$ is less than $f(5)$ by the area of a triangle whose base is three and whose altitude it two, so $f(2)=7-2 \pi \sim 0.717$. Now $7-2 \pi<3<10-2 \pi$, so the absolute minimum we seek is $f(2)=7-2 \pi$.

3.4 Part d

In the vicinity of $x=-5$, the graph of f^{\prime} is a line whose slope is $-1 / 2$, so $f^{\prime \prime}(-5)=-1 / 2$. Immediately to the left of $x=3$, the graph of f^{\prime} is given by a straight line of slope 2 , so the left-hand derivative, $f_{-}^{\prime \prime}(3)$ of f^{\prime} at $x=3$ must be 2 . Immediately to the right of $x=3$, the graph of f^{\prime} is given by a line of slope -1 , so the right-hand derivative, $f_{+}^{\prime \prime}(3)$, of f^{\prime} at $x=3$ must be given by $f_{+}^{\prime \prime}(3)=-1$. The one-sided derivatives of f^{\prime} at $x=3$ are different, so $f^{\prime \prime}(3)$ doesn't exist.

4 Problem 4

4.1 Part a

We have $4 H^{\prime}(t)=27-H(t) ; H(0)=91$. Thus,

$$
\begin{equation*}
H^{\prime}(0)=\frac{27-91}{4}=-16, \tag{27}
\end{equation*}
$$

and an equation for the tangent line at $(0, H(0))$ is $H=91-16 t$. Setting $t=3$ in this equation for the tangent line, we obtain the approximation $H=43$ for the value of $H(3)$.

4.2 Part b

Differentiating the original equation, we obtain $H^{\prime \prime}(t)=-H^{\prime}(t) / 4$. Substituting for $H^{\prime}(t)$ then gives

$$
\begin{equation*}
H^{\prime \prime}(t)=-\frac{1}{4} \cdot \frac{27-H}{4}=\frac{H-27}{16} \tag{28}
\end{equation*}
$$

Thus, $H^{\prime \prime}(0)=(91-27) / 16=4>0$. This means that the solution curve lies above its tangent line near $t=0$, so we expect our estimate to be an underestimate.

4.3 Part c

If $G^{\prime}(t)=-[G(t)-27]^{2 / 3}$ with $G(0)=91$, then

$$
\begin{equation*}
\frac{G^{\prime}(t)}{[G(t)-27]^{3 / 2}}=-1, \tag{29}
\end{equation*}
$$

and $(G(t)-27)>0$ when t is near $t=0$ because G-being a solution to a differential equation-must be a continuous function. For such values of t, we may therefore write

$$
\begin{equation*}
\int_{0}^{t} \frac{G^{\prime}(\tau)}{[G(\tau)-27]^{2 / 3}} d \tau=-\int_{0}^{t} d \tau \tag{30}
\end{equation*}
$$

so that

$$
\begin{equation*}
3[G(t)-27]^{1 / 3}-3[G(0)-27]^{1 / 3}=-t \tag{31}
\end{equation*}
$$

or

$$
\begin{equation*}
3[G(t)-27]^{1 / 3}=12-t . \tag{32}
\end{equation*}
$$

From this it follows that

$$
\begin{equation*}
G(t)=\frac{1}{27}\left(2457-432 t+36 t^{2}-t^{3}\right) \tag{33}
\end{equation*}
$$

Thus, $G(3)=54$, and the internal temperature of the potato at $t=3$ is, according to this model, 54 degrees Celsius.

5 Problem 5

5.1 Part a

From

$$
\begin{equation*}
f(x)=\frac{3}{2 x^{2}-7 x+5}, \tag{34}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
f^{\prime}(x)=-\frac{3(4 x-7)}{\left(2 x^{2}-7 x+5\right)^{2}} . \tag{35}
\end{equation*}
$$

The slope of the tangent line at $x=3$ is

$$
\begin{equation*}
f^{\prime}(3)=-\frac{3(4 \cdot 3-7)}{\left(2 \cdot 3^{2}-7 \cdot 3+5\right)^{2}}=-\frac{15}{4} . \tag{36}
\end{equation*}
$$

5.2 Part b

The only critical point for f in $(1,5 / 2)$ is at $x=7 / 4$, because that is the only point in the interval where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined. The denominator of f^{\prime} has zeros only at the points $x=1$ and $x=5 / 2$, by the Quadratic Formula. Its denominator, being the square of a non-zero quantity, is positive on $(1,5 / 2)$, the sign of $f^{\prime}(x)$, because of the minus sign in front of the fraction, is the opposite of the sign of its numerator. Thus, $f^{\prime}(x)>0$ on $(1,7 / 4)$, while $f^{\prime}(x)<0$ on $(7 / 4,5 / 2) \cup(5 / 2, \infty)$. It follows by the First Derivative Test that f has a relative maximum at $x=7 / 4$.

5.3 Part c

We have

$$
\begin{equation*}
\int_{5}^{\infty} f(x) d x=\lim _{T \rightarrow \infty} \int_{5}^{T} f(x) d x \tag{37}
\end{equation*}
$$

provided that the limit exists. Thus, we write

$$
\begin{align*}
\int_{5}^{\infty} f(x) d x & =\lim _{T \rightarrow \infty} \int_{5}^{T}\left[\frac{2}{2 x-5}-\frac{1}{x-1}\right] d x \tag{38}\\
& =\left.\lim _{T \rightarrow \infty}[\ln (2 x-5)-\ln (x-1)]\right|_{5} ^{T} \tag{39}\\
& =\left.\lim _{T \rightarrow \infty} \ln \left(\frac{2 x-5}{x-1}\right)\right|_{5} ^{T} \tag{40}\\
& =\lim _{T \rightarrow \infty}\left[\ln \frac{2-5 / T}{1-1 / T}-\ln \frac{5}{4}\right]=\ln \frac{8}{5} \tag{41}
\end{align*}
$$

and the improper integral converges to $\ln (5 / 8)$.

5.4 Part d

The function $f(x)=3 /[(2 x-5)(x-1)]$ is positive on $(5, \infty)$ because both of the factors in its denominator are positive there. We have seen in Part b, above, that $f^{\prime}(x)<0$ on $(5 / 2, \infty)$, so f is a decreasing function on $[5, \infty)$. We have seen in Part c, above, that $\int_{5}^{\infty} f(x) d x$ is a convergent improper integral. The Integral Test assures us that if there is a positive integer M such that

1. f is a continuous function on $[M, \infty)$,
2. f is a decreasing function on $[M, \infty)$, and
3. the improper integral $\int_{M}^{\infty} f(x) d x$ converges,
then the series $\sum_{M}^{\infty} f(n)$ converges. We conclude that

$$
\sum_{n=5}^{\infty} \frac{3}{2 n^{2}-7 n+5}
$$

converges.
Note: The convergence of this series can also be shown by using the convergent series $\sum n^{-2}$ and the Comparison-Limit Test, or by using the convergent series $\sum 3 /\left(2 n^{2}\right)$ and the Comparison Test.

6 Problem 6

6.1 Part a

From what is given, we find that

$$
\begin{align*}
f(0) & =0 \tag{42}\\
f^{\prime}(0) & =1 \tag{43}\\
f^{\prime \prime}(0) & =f^{(1+1)}(0)=(-1) \cdot f^{\prime}(0)=-1 \tag{44}\\
f^{(3)}(0) & =f^{(2+1)}(0)=(-2) \cdot f^{(2)}(0)=2 \tag{45}\\
f^{(4)}(0) & =f^{(3+1)}(0)=(-3) \cdot f^{(3)}(0)=-6, \tag{46}
\end{align*}
$$

and, by an easy induction,

$$
\begin{equation*}
f^{(n)}(0)=(-1)^{n-1}(n-1)!\text { when } n \geq 1 . \tag{47}
\end{equation*}
$$

The coefficient a_{n} of the Maclaurin series for f is given by

$$
\begin{align*}
& a_{n}=\frac{f^{(n)}(0)}{n!}, \text { so } \tag{48}\\
& a_{0}=0 \tag{49}\\
& a_{1}=1 ; \tag{50}\\
& a_{2}=\frac{-1}{2!}=-\frac{1}{2} \tag{51}\\
& a_{3}=\frac{2}{3!}=\frac{1}{3} \tag{52}\\
& a_{4}=\frac{-6}{4!}=-\frac{1}{4}, \tag{53}
\end{align*}
$$

and, continuing inductively,

$$
\begin{equation*}
a_{n}=(-1)^{n-1} \frac{1}{n} \tag{54}
\end{equation*}
$$

The desired first four non-zero terms of the Maclaurin series for f are therefore

$$
x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}
$$

and the general term is $(-1)^{n-1} \frac{x^{n}}{n}, n=1,2, \ldots$.

6.2 Part b

When $x=1$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots \tag{55}
\end{equation*}
$$

which is the alternating harmonic series-a convergent series.
However, when $x=1$,

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|(-1)^{n-1} \frac{x^{n}}{n}\right|=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots \tag{56}
\end{equation*}
$$

and this is the divergent harmonic series. It follows that $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$ is conditionally convergent when $x=1$.

6.3 Part c

If $g(x)=\int_{0}^{x} f(t) d t$, where

$$
\begin{equation*}
f(x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\cdots, \tag{57}
\end{equation*}
$$

then, integrating term-by-term, we have

$$
\begin{align*}
g(x) & =\int_{0}^{x}\left[t-\frac{t^{2}}{2}+\frac{t^{3}}{3}-\frac{t^{4}}{4}+\cdots+(-1)^{n-1} \frac{t^{n}}{n}+\cdots\right] d t \tag{58}\\
& =\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{12}-\frac{x^{5}}{20}+\cdots+(-1)^{n-1} \frac{x^{n+1}}{n(n+1)}+\cdots, \tag{59}
\end{align*}
$$

which gives the Maclaurin series for g. The convergence of the series for f on $(-1,1)$ guarantees the convergence of the new series for g on $(-1,1)$.

6.4 Part d

We note first that, from Part c, above,

$$
\begin{equation*}
P_{4}(x)=\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{12} \tag{60}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
P_{4}\left(\frac{1}{2}\right)=\frac{1}{8}-\frac{1}{48}+\frac{1}{192}=\frac{7}{64} . \tag{61}
\end{equation*}
$$

The alternating series bound is the magnitude of the first unused term from the series, or, in this case,

$$
\begin{equation*}
\left|(-1)^{3} \frac{(1 / 2)^{5}}{4 \cdot 5}\right|=\frac{1}{640} . \tag{62}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\left|P_{4}\left(\frac{1}{2}\right)-g\left(\frac{1}{2}\right)\right|=\left|\frac{7}{64}-g\left(\frac{1}{2}\right)\right| \leq \frac{1}{640}<\frac{1}{500} \tag{63}
\end{equation*}
$$

6.5 Addendum

The series given in this problem is easily summed. If

$$
\begin{equation*}
f(x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\cdots=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n} \tag{64}
\end{equation*}
$$

for $-1<x<1$, then

$$
\begin{align*}
f^{\prime}(x) & =\sum_{n=1}^{\infty}(-1)^{n-1} x^{n-1} \tag{65}\\
& =\frac{1}{1+x} \tag{66}
\end{align*}
$$

also on $-1<x<1$, because the series of (65) is geometric, with common ratio $-x$. Integrating from 0 to x and using the observation that $f(0)=0$, we find that

$$
\begin{equation*}
f(x)=\int_{0}^{x} \frac{d t}{1+t}=\ln (1+x) \tag{67}
\end{equation*}
$$

Now an easy integration by parts shows that

$$
\begin{equation*}
g(x)=(1+x) \ln (1+x)-x . \tag{68}
\end{equation*}
$$

We have shown that $P_{4}(1 / 2)=7 / 64=0.109375$. From (68), we see that $g(x) \sim 0.1081977$. The magnitude of the difference between these two numbers is about 0.00118 .

