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1 Problem1

1.1 Parta

The approximation with a left-hand sum using the intervals given is

50.3-24144-346.5-5=176.3. (1)

1.2 Partb

We are given that the area of cross-sections decreases as h increases, so the cross-section at
the left-hand endpoint of each interval has maximal area for the cross-sections associated
with that interval. Thus, the left-hand sum overestimates the volume of the tank. The
required approximate volume is 176.3 cubic feet.

1.3 Partc
10 50.3

e0.2h +h
approximate volume of 101.325 cubic feet for the tank.

The volume, in cubic feet, of the tank is dh. Numerical integration gives an



14 Partd

Let H(t) denote the height of water in the tank at time ¢. Then the volume, in cubic feet,

of water in the tank at time ¢ is

H(t)
V(L) = / U3
0

e0-2h +h
Thus, by the Fundamental Theorem of Calculus and the Chain Rule,
VI(t) = 003 H'(t), so that

02H(0) 4 F (¢)
50.3

e02H(t0) 1 H (t)

where ty is the instant when the depth of water in the tank is five feet. Thus,

50.3
g 0.26 ~ 1.694 cubic feet per minute.

V'(to) = 50.3 + H'(to),

V'(ty) =
(to) s

2 Problem 2

21 Parta
The required area, Ar is given by
1

w/2
= / [1 + sin 6 cos 26]? d
2 Jo

)

©)
(4)

(5)

(6)

?)

Although the necessary anti-derivative can be found by elementary techniques, the cal-
culation requires a significant amount of time; and this is a calculator-active problem.

Numerical integration gives Ar ~ 0.648.

Note: For the curious:

/[1 + sin 6 cos 26)% df = /[1 + 2sin 6 cos 20 + sin® 0 cos? 26] d6.
We break this into pieces. The first is easy. The second is
/sin&cos%d@ = /sin& (200829 —1) db

2
:2/cos2081n9d9/sin9d9:3cos39+c059

(8)

©)

(10)



The third is
1
/sin2 6 cos® 26 df = 5 /(1 — cos 26) cos? 26 df
= % / (cos2 20 — cos® 29) do
1 1

=4/(1+cos49) d9—2/(1—sin229)cos29d9

1 1 1 1
= 194— Esinél@— ZsinZ@—l— Esin?’ 20

2.2 Partb

The ray § = k divides the region S into two regions of equal area when

k w/2
/ cos? 0 dl = / cos? 0 db.
0 Kk

(11)
(12)
(13)

(14)

(15)

In fact, there are other possibilities. Either of the integrals of (15) may be equated to the

1 w/2
integral — / cos? 0 df.
2 Jo

(For the curious: Numerical solution of equation (15), which is not required, yields k& ~

0.4158556.)

2.3 Partc

The distance w(f) from (f(#),0) and (g(8), #) is measured along the ray 6, and, for all § in

the interval [0, 7/2], we have ¢g(0) > f(0). Therefore,

w() = g(0) - f(6)

=2cosf — 1 —sinfcos26.
The average value, w4, of w(6) over [0, 7/2] is thus given by

w/2
wa=2 /0 (9(6) — £(8)) db

™

2 w/2
:/ [2cosf — 1 — sin 6 cos 260] db.
0

™

(16)
17)

(18)

(19)



Integrating numerically again, we obtain w4 ~ 0.485446.

wy ~ 0.485.

(For the curious: The antiderivative is again accessible by elementary techniques:

1 1
/[20089— 1 —sinf cos26] df = 6COS30+2Sin0_ §C089—9.

This yields
w f— E J—
A= 3 )
but, again, at the expense of time.)
2.4 Partd
We must solve the equation
wa =w(0a),

for 04, or

0.485446 = 2cosfy — 1 —sinf 4 cos 20 4.
Numerical solution of this equation gives #4 ~ 0.581859, or #4 ~ 0.582. We have
w'(0) = —2sin @ — cos O cos 20 + 2 sin  sin 26,

whence

w'(64) ~ —0.581859 < 0.

(20)

(21)

(22)

(23)

(24)

(25)

(26)

We conclude that w(@) is decreasing near § = 604 because w’ is continuous there and

w’(HA) < 0.

Remark: The notions of “increasing [decreasing] at a point” are not defined in most ele-
mentary calculus texts. Strictly speaking, the observation that w’ is continuous at § = 64
is necessary to justify the conclusion that w is decreasing on some interval centered at
0 = 04. Itis, in fact, possible to give examples of functions ¢ which have the property that
for some value xy, ¢(xg) < 0 but ¢ is not a decreasing function on any interval, however

small, centered at zo. However, the readers generally disregard this technicality.)
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3 Problem 3

3.1 Parta

-2
By the Fundamental Theorem of Calculus, / f'(x)dx = f(=2) — f(=6) = 7 — f(-6).

—6
But the value of this integral is the area of a triangle whose base is four and whose altitude
5

istwo,so 7— f(—6) =4, and f(—6) = 3. Similarly,/ f'(z) dz = f(5)—7, while the value
2

of this integral is the area of a triangle of base thre;, altitude two, less the area of a half
disk of radius two. Hence, f(5) =7+ 3 — 2m = 10 — 27.

3.2 Partb

The function f is increasing on the closures of those intervals where f’ is positive, or on
[—6, —2] and on [2, 5].

3.3 Partc

The absolute minimum for f on [—6, 5] must occur either at an endpoint or at a critical
point where the derivative changes sign from negative to positive. Thus, the only possi-
bilities are + = —6, x = 2, and = 5. We already (see Part a, above) have f(—6) = 3 and
f(5) = 10 — 27, which latter is about 3.717, so we need only calculate f(2). But f(2) is
less than f(5) by the area of a triangle whose base is three and whose altitude it two, so
f(2) =7—-27 ~0.717. Now 7 — 2w < 3 < 10 — 2, so the absolute minimum we seek is
f(2)=7-"2n.

3.4 Partd

In the vicinity of z = —5, the graph of f’ is a line whose slope is —1/2, so f"(—5) = —1/2.
Immediately to the left of x = 3, the graph of f’ is given by a straight line of slope 2, so
the left-hand derivative, f”(3) of f’ at z = 3 must be 2. Immediately to the right of z = 3,
the graph of f’ is given by a line of slope —1, so the right-hand derivative, f/(3), of f" at
x = 3 must be given by f7(3) = —1. The one-sided derivatives of f’ at z = 3 are different,
so f”(3) doesn’t exist.



4 Problem 4

41 Parta

We have 4H'(t) = 27 — H(t); H(0) = 91. Thus,

2791

H(0) = =

= —16, 27)

and an equation for the tangent line at (0, H(0)) is H = 91 — 16t. Setting ¢ = 3 in this equa-
tion for the tangent line, we obtain the approximation H = 43 for the value of H (3).

4.2 Partb

Differentiating the original equation, we obtain H"(t) = —H'(t)/4. Substituting for H'(t)
then gives

1 21-H H-21

H// t —
®) 4 4 16

(28)

Thus, H"(0) = (91 — 27)/16 = 4 > 0. This means that the solution curve lies above its
tangent line near t = 0, so we expect our estimate to be an underestimate.

4.3 Partc

If G'(t) = —[G(t) — 27)%/3 with G(0) = 91, then

G'(t)

G(t)— 2732~ 7 29)

and (G(t) — 27) > 0 when ¢ is near ¢ = 0 because G—being a solution to a differen-
tial equation—must be a continuous function. For such values of ¢, we may therefore

write
t G/(T) B t
/0 —[G(T) RpTRTE dr = _/0 dr, (30)

so that

3[G(t) — 2712 = 3[G(0) — 273 = —¢, (31)



or
3[G(t) — 273 =12 —¢. (32)
From this it follows that

1
G(t) = 5 (2457 — 432t + 36t% — t3) (33)

Thus, G(3) = 54, and the internal temperature of the potato at ¢ = 3 is, according to this
model, 54 degrees Celsius.

5 Problem 5
5.1 Parta
From
f(@) = —— (34)
Vo "ty
we obtain
oy 3dx-=T)
fw) = (222 — Tx +5)%° (35
The slope of the tangent line at x = 3 is
3(4-3—-7 15
JC e ) B (36)

(2-32-7-3+5)2 4~

5.2 Partb

The only critical point for f in (1,5/2) is at = 7/4, because that is the only point in the
interval where f’'(z) = 0 or f/(x) is undefined. The denominator of f’ has zeros only at the
points z = 1 and « = 5/2, by the Quadratic Formula. Its denominator, being the square
of a non-zero quantity, is positive on (1,5/2), the sign of f’(z), because of the minus sign
in front of the fraction, is the opposite of the sign of its numerator. Thus, f'(z) > 0 on
(1,7/4), while f'(z) < 0 on (7/4,5/2) U (5/2,00). It follows by the First Derivative Test
that f has a relative maximum at z = 7/4.



5.3 Partc
We have
o) T
/ f(x)dx = lim f(x) dx, (37)
5 T—00 5

provided that the limit exists. Thus, we write

/Oof()d o [ [2 Ly (38)
s I E ) (25 -1
T
= lim [In(2z —5) — In(z — 1)] (39)
T—00 5
T
= lim ln<2x_5> (40)
T—o0 x—1 5
. 2-5/T 5 8
= [ln1—1/T _ln4] =y, (1)

and the improper integral converges to In(5/8).

5.4 Partd

The function f(z) = 3/[(2x — 5)(x — 1)] is positive on (5, c0) because both of the factors
in its denominator are positive there. We have seen in Part b, above, that f'(z) < 0 on
(5/2,00), so f is a decreasing function on [5,00). We have seen in Part ¢, above, that
J5° f(x) dx is a convergent improper integral. The Integral Test assures us that if there is
a positive integer M such that

1. fis a continuous function on [M, c0),
2. fis a decreasing function on [M, c0), and
3. the improper integral [,; f(x) dz converges,

then the series >3, f(n) converges. We conclude that

e}

Z ’
2n2 —Tn+5
n=>»5

converges.
Note: The convergence of this series can also be shown by using the convergent series

>~ n~2 and the Comparison-Limit Test, or by using the convergent series _ 3/(2n?) and
the Comparison Test.



6 Problem 6

6.1 Parta

From what is given, we find that

and, by an easy induction,

F™0) = (=1)"*(n—1)! whenn > 1.

The coefficient a,, of the Maclaurin series for f is given by

() (o
= 100,
n.
ag = 0;
a; = 17
-1 1
o = — — ——
2T o Ty
2 1
s = — ==
TR
-6 1
“EW T
and, continuing inductively,
41
a, = (_1)n 1E

The desired first four non-zero terms of the Maclaurin series for f are therefore

2 3 1’4

2 b
Ty Ty T,

n
and the general term is (—1)"*196—, n=12...
n

(42)
(43)
(44)
(45)
(46)

(47)

(48)

(49)
(50)

(1)
(52)

(53)

(54)



6.2 Partb

When z = 1, we have

gyt L b b
Z( 1) n_1 5Tz 1t (55)

n=1
which is the alternating harmonic series—a convergent series.

However, when z = 1,

oo

D

n=1

" 1 1 1
n71£:1+7+7+,+...7 (56)

(=1) 234

and this is the divergent harmonic series. It follows that >°° | (—1)"~!Z" is conditionally
convergent when z = 1.

6.3 Partc

If g(x) = [y f(t)dt, where

2?23 2t x
—p— T T (=) 7
then, integrating term-by-term, we have
T t2 t3 t4 +n

= t—— 4 —— — 4 (=)t 58
o) = [le= G5 - 8)

O |zt
ST G Y i 59
2 6+12 20+ +(=1 n(n—i—l)+ ’ 9

which gives the Maclaurin series for g. The convergence of the series for f on (—1,1)
guarantees the convergence of the new series for g on (-1, 1).

6.4 Partd

We note first that, from Part ¢, above,

Py(z) = 5 — —+ - (60)

10



Thus,

1y 1 1 1 7
Plz)l=2 - — 4+ - — L 1
4(2) 8 4R 102 64 (61)

The alternating series bound is the magnitude of the first unused term from the series, or,
in this case,

a2 1
‘( V25" a0 (62)
It follows that
1 1 7 1 1 1
Pl=)=g(z)=]=-g(z)] <= <—.
! <2> g <2>' 61 7 <2>’ =640 < 500 (63)
6.5 Addendum
The series given in this problem is easily summed. If
B 2 3 4 n T4 n
for -1 < z < 1, then
flle) =Y (=) ta ! (65)
n=1
1
142’ (66)

also on —1 < z < 1, because the series of (65) is geometric, with common ratio —z.
Integrating from 0 to x and using the observation that f(0) = 0, we find that

Todt
= —_— = 1 1 .
f@)= | {5 =mt) (©7)
Now an easy integration by parts shows that
g(z)=1+2z)In(1+2z) — x. (68)

We have shown that P4(1/2) = 7/64 = 0.109375. From (68), we see that g(x) ~ 0.1081977.
The magnitude of the difference between these two numbers is about 0.00118.
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