
AP Calculus 2018 AB FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics

Metropolitan State University of Denver

May 22, 2018

1 Problem 1

1.1 Part a

During the time interval 0 ≤ t ≤ 300,∫ 300

0
r(t) dt = 44

∫ 300

0

(
t

100

)3(
1− t

300

)7

dt = 270 (1)

people enter the line for the escalator. (Fortunately, the problem is calculator active; find-
ing this antiderivative doesn’t bear thinking about under examination conditions.)

1.2 Part b

People exit the line at the rate of 0.7 person per second, so 300 · 0.7 = 210 people leave
the line between t = 0 and t = 300. Because there were 20 people in the line at t = 0 and
270 people entered the line between t = 0 and t = 300, there must be 20 + 270− 210 = 80
people in the line at t = 300.

1.3 Part c

In order to solve this problem, we must assume that people exit the line at the same rate
(0.7 people per second) after t = 300; the problem statement is ambiguous about this.
Under this assumption, the line will be empty for the first time when t = 300 + 80/0.7 =
414.286.
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1.4 Part d

People arrive at the rate r(t) and leave at the rate 0.7. Because there are 20 people in the
line at t = 0, the number n(t) of people in the line at time t is given, when 0 ≤ t ≤ 300,
by

n(t) = 44

∫ t

0

( τ

100

)3 (
1− τ

300

)7
dτ − 0.7t. (2)

This can be minimal only when t = 0, t = 300, or n′(t) = 0. The latter condition is met
when

n′(t) = 20 + 44

(
t

100

)3(
1− t

300

)7

− 0.7 = 0, (3)

or, solving numerically, when

t ∼ 33.0133, (4)

and when

t ∼ 166.5747. (5)

Evaluating n at these four values, we find that

n(0) = 20, (6)
n(33.0133) = 3.8034, (7)
n(166.5747) = 158.0701, (8)

n(300) = 80. (9)

The minimum value of this function thus occurs at about time t = 33.0133. To the nearest
whole number, the minimum number of people is 4.

2 Problem 2

2.1 Part a

From

v(t) =
10 sin

(
0.4t2

)
t2 − t+ 3

, (10)
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we find that acceleration, a(t), is given by

a(t) = v′(t) =
(8t3 − 8t2 + 24t) cos

(
0.4t2

)
− (20t− 10) sin

(
0.4t2

)
(t2 − t+ 3)2

(11)

so that

a(3) ∼ −2.118195, or− 2.118. (12)

2.2 Part b

The position, x(t), of the particle at time t is given by

x(t) = −5 +
∫ t

0

10 sin
(
0.4τ2

)
τ2 − τ + 3

dτ. (13)

This is not an elementary integral, and we make no attempt to find an antiderivative;
when t = 3, a numerical integration gives

x(3) ∼ −1.760213, or −1.760. (14)

2.3 Part c

We have ∫ 3.5

0
v(τ) dτ ∼ 2.844 (15)∫ 3.5

0
|v(τ))| dτ ∼ 3.737. (16)

The first of these integrals gives the distance between the particle’s positions at t = 0 and
at t = 3.5. The second integral gives the total distance that the particle travels in any
direction during the same interval.

2.4 Part d

If the second particle’s position is x2(t) = t2 − t, then the second particle’s velocity is
v2(t) = x′2(t) = 2t− 1. So we must solve the equation v(t) = v2(t), or

10 sin
(
0.4t2

)
t2 − t+ 3

= 2t− 1. (17)
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We solve numerically, and we find that the solution is t ∼ 1.571.

Remark: Although the solution is not π/2, this number is correct to the required three
decimal places. Will the readers accept it?

3 Problem 3

3.1 Part a

By the Fundamental Theorem of Calculus,

f(x) = 3 +

∫ x

1
g(t) dt, (18)

so g(−5) is 3 added to, reading from the graph, the sum of the area of a 3 × 3 square, the
area of a triangle of base 1 and height 3 and the negative of a triangle of base 1 and height
2. That’s

3 + 32 +
1

2
· 1 · 3− 1

2
· 1 · 2 =

25

2
. (19)

3.2 Part b

We have ∫ 6

1
g(t) dt =

∫ 3

1
2 dt+ 2

∫ 6

3
(t− 4)2 dt (20)

= 2 · 2 + 2

3
(t− 4)3

∣∣∣∣6
3

(21)

= 4 +
2

3
[8− (−1)] = 10. (22)

3.3 Parts c & d

There are thorny issues with these two questions—not because they involve difficult
mathematics, but because there is no general agreement about a formal definition for
the term “concave upward” (or for its sibling term “concave downward”). And so, of
course, there can’t be general agreement about what an “inflection point” is, either. To
make matters worse, even those who agree on their definitions for the two flavors of con-
cavity disagree about what inflections points are. (Some insist that there must be a line
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tangent to the original curve at a point if it is to qualify as an inflection point; others omit
this requirement.)

Some people take a region of upward concavity to be a region (which may, or may not,
be required to be open, depending on whom we’re reading) where the derivative is in-
creasing, others a region where the tangent line lies below the curve near the point of
tangency. Some take positivity of the second derivative to be (to be—not to imply) upward
concavity. Still others define a function F to be concave upward on an interval I provided
that for any pair x1 < x2 of points in I and any number α between 0 and 1 it is true that
F [αx1+(1−α)x2] ≤ αF (x1)+ (1−α)F (x2)—that is, no matter what points x1 and x2 we
choose in I , the curve y = F (x) never rises above the line segment connecting the points(
x1, F (x1)

)
and

(
x2, F (x2)

)
.

Figures 1 and 2 show the graphs of f and f ′′ = g′ respectively. It is clear from the graph
that if we adopt the last definition we gave for upward concavity—the one in terms of line
segments lying above the curve—then f is concave upward on [−5, 3] and on [4, 6].

If, on the other hand, we think that a function is concave upward just in those regions
where its second derivative is positive, we must conclude that f is concave upward on
the intervals (−2,−1), (0, 1), and (4, 6).

That folks use the term “increasing” in different ways adds a bit of spice. (Some folks
require that f(α) < f(β) when α < β and both are in I , some only that f(α) ≤ f(β), for f
to be increasing on .

It should be clear now that someone can reasonably assert that f is increasing and con-
cave upward on the intervals (−1, 3) and (4, 6) while someone else can assert—just as
reasonably—that f is both increasing and concave upward just on the intervals (0, 1) and
(4, 6). It is only when we know precisely what these people are using for their definitions
that we can decide whether they’re right or wrong.

Different (correct) decisions about different meanings for upward and downward concav-
ity can clearly lead to different (correct) decisions about inflection points.

Students in elementary calculus will almost certainly have seen just one definition for each
of their concepts; they won’t even know that different people might use substantially dif-
ferent definitions. So it’s very unlikely that these students will refer to their definitions—
let alone state them in full—in the answers they give to these questions.

All definitions of concavity that I’ve seen yield the theorem that tells us that a function
whose second derivative is positive on an interval is necessarily concave upward on that
interval. My guess is that the development committee looked (and the readers will look)
at f ′′(x), observed (will observe) that it changes sign at just one point—at x = 4—and
concluded (will conclude) that there is just one inflection point, which is at x = 4.
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Figure 1: y = f(x) = 3 +
∫ x
1 g(t) dt
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Figure 2: The graph of f ′′(x) = g′(x)
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It’s very unusual for the development committee to pose such an ambiguous problem.
What the readers will do with the mess is anybody’s guess. I’m glad I don’t have to
decide.

4 Problem 4

4.1 Part a

From the table, we estimate

H ′(6) ∼ H(7)−H(5)

7− 5
=

11− 6

7− 5
=

5

2
. (23)

The number H ′(6) gives, in meters per year, the rate at which the tree is growing at time
t = 6.

4.2 Part b

The function H is given twice differentiable, presumably (though the problem statement
is vague about this) at least on the interval (2, 10), so it is continuous on the interval
[3, 5] and differentiable on the interval (3, 5). The hypotheses of the mean value theorem
being satisfied, there must be at least one point ξ in the interval (3, 5), and therefore in the
interval (2, 10), such that

H ′(ξ) =
H(5)−H(3)

5− 3
=

6− 2

5− 3
=

4

2
= 2. (24)

4.3 Part c

The required trapezoidal sum is
1

10− 2
=

1

8
times

1

2
[H(2) +H(3)](3− 2) +

1

2
[H(3) +H(5)](5− 3)

+
1

2
[H(5) +H(7)](5− 7) +

1

2
[H(10) +H(7)](10− 7)

=
1

2
[(1.5 + 2)(3− 2) + (2 + 6)(5− 3) + (6 + 11)(7− 5) + (11 + 15)(10− 7)] (25)

=
1

2
(3.5 · 1 + 8 · 2 + 17 · 2 + 26 · 3) = 65.75. (26)

The average height during the period 2 ≤ t ≤ 10 is therefore 8.219 meters, to three decimal
places.
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4.4 Part d

We are given

G(x) =
100x

1 + x
, (27)

where x is the diameter of the base of the tree in meters and h = G(x) is the height, also
in meters, of the tree. We have

dh

dt
=
dh

dx
· dx
dt
. (28)

Now

dh

dx
=

d

dx

(
100x

1 + x

)
=

100

(1 + x)2
, (29)

and h = 50 implies that x = 1, so that we have been given
dx

dt

∣∣∣∣
h=50

= 0.03. Putting this all

together, we find that

dh

dt

∣∣∣∣
h=50

=
100

(1 + 1)2
· 0.03 = 0.75 meters/year. (30)

5 Problem 5

Let f be the function given by f(x) = ex cosx.

5.1 Part a

The average rate of change of f on the interval 0 ≤ x ≤ π is

f(π)− f(0)
π − 0

=
eπ cosπ − e0 cos 0

π
=
−eπ − 1

π
. (31)

5.2 Part b

f ′(x) = ex(cosx− sinx), so the slope of the line tangent to the curve y = f(x) at the point
corresponding to x = 3π/2 is

f ′
(
3π

2

)
= e3π/2

(
cos

3π

2
− sin

3π

2

)
= e3π/2. (32)
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5.3 Part c

The absolute minimum value of f(x) on [0, 2π] must occur at a critical point or at an
endpoint of the interval. The function f is everywhere differentiable, so the critical points
are where the derivative vanishes—which, from the value of f ′(x) we found in Part b
of this problem, can happen only where cosx = sinx, or, because sinx never vanishes
where cosx does, where tanx = 1. Thus, the critical points in [0, 2π] are at x = π/4 and
x = 5π/4.

We find the absolute minimum by examining f(0), f(π/4), f(5π/4), and f(2π). Now
ex > 0 for all x; and cosx is positive at all of these values but 5π/4, where it is negative. It
follows that the absolute minimum value of f(x) = ex cosx on the interval [0, 2π] is found
at x = 5π/4 and is f(5π/4) = −e5π/4/

√
2.

5.4 Part d

We have limx→π/2 f(x) = limx→π/2 [e
x cosx] = 0. We are given that g is differentiable, and

it is therefore continuous at x = π/2. So limx→π/2 g(x) = g(π/2) = 0. Hence, by l’Hôpital’s
rule,

lim
x→π/2

f(x)

g(x)
= lim

x→π/2

f ′(x)

g′(x)
, (33)

provided that the latter limit exists. From the graph given with the problem, we see that
limx→π/2 g

′(x) = 2. On the other hand,

lim
x→π/2

f ′(x) = lim
x→π/2

[ex(cosx− sinx)] = −eπ/2. (34)

Therefore,

lim
x→π/2

f(x)

g(x)
= lim

x→π/2

f ′(x)

g′(x)
= −e

π/2

2
. (35)
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Figure 3: Two solutions of y′ = x(y − 1)2/3.
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6 Problem 6

6.1 Part a

6.2 Part b

If y = f(x) is the particular solution to the differential equation that satisfies f(1) = 0,
then

f ′(1) =
1

3
· 1 · [f(1)− 2]2 =

4

3
. (36)

An equation for the line tangent to the solution at x = 1 is therefore

y = f(1) + f ′′(1)(x− 1), (37)

or

y =
4

3
(x− 1). (38)

The value of y on this tangent line approximates f(0.7). On the tangent line, we have

y

∣∣∣∣
x=0.7

=
4

3
(0.7− 1) = −0.4, (39)

so we conclude that f(0.7) ∼ −0.4.

6.3 Part c

Supposing, as in the previous part of this problem, that y = f(x) is the solution we seek,
we have

f ′(x) =
1

3
x[f(x)− 2]2, (40)

or

f ′(x)

[f(x)− 2]2
=
x

3
. (41)

Being about to use the variable x in another role, we rewrite this equation in terms of the
new variable, t:

f ′(t)

[f(t)− 2]2
=
t

3
. (42)
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We integrate both sides of this latter equation from 1 to x and solve for f(x):∫ x

1

f ′(t)

[f(t)− 2]2
dt =

∫ x

1

t

3
dt; (43)

1

2− f(t)

∣∣∣∣x
1

=
t2

6

∣∣∣∣x
1

; (44)

1

2− f(x)
− 1

2− f(1)
=
x2 − 1

6
; (45)

1

2− f(x)
=
x2 + 2

6
; (46)

f(x) =
2(x2 − 1)

x2 + 2
. (47)

Note: Substitute u = f(t), du = f ′(t) dt on the left side of equation (43). If t = 1, then
u = f(1) = 0, while if t = x, then u = f(x) = y. Equation (43) then becomes∫ y

0

du

(u− 2)2
=

∫ x

1

t

3
dt, (48)

which is what we see in the (less rigorous but perhaps more familiar) separation of vari-
ables technique.
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