
AP Calculus 2018 BC FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics

Metropolitan State University of Denver

May 22, 2018

1 Problem 1

1.1 Part a

During the time interval 0 ≤ t ≤ 300,∫ 300

0
r(t) dt = 44

∫ 300

0

(
t

100

)3(
1− t

300

)7

dt = 270 (1)

people enter the line for the escalator. (Fortunately, the problem is calculator active; find-
ing this antiderivative doesn’t bear thinking about under examination conditions.)

1.2 Part b

People exit the line at the rate of 0.7 person per second, so 300 · 0.7 = 210 people leave
the line between t = 0 and t = 300. Because there were 20 people in the line at t = 0 and
270 people entered the line between t = 0 and t = 300, there must be 20 + 270− 210 = 80
people in the line at t = 300.

1.3 Part c

In order to solve this problem, we must assume that people exit the line at the same rate
(0.7 people per second) after t = 300; the problem statement is ambiguous about this.
Under this assumption, the line will be empty for the first time when t = 300 + 80/0.7 =
414.286.
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1.4 Part d

People arrive at the rate r(t) and leave at the rate 0.7. Because there are 20 people in the
line at t = 0, the number n(t) of people in the line at time t is given, when 0 ≤ t ≤ 300,
by

n(t) = 20 + 44

∫ t

0

( τ

100

)3 (
1− τ

300

)7
dτ − 0.7t. (2)

This can be minimal only when t = 0, t = 300, or n′(t) = 0. The latter condition is met
when

n′(t) = 44

(
t

100

)3(
1− t

300

)7

− 0.7 = 0, (3)

or, solving numerically, when

t ∼ 33.0133, (4)

and when

t ∼ 166.5747. (5)

Evaluating n at these four values, we find that

n(0) = 20, (6)
n(33.0133) = 3.8034, (7)
n(166.5747) = 158.0701, (8)

n(300) = 80. (9)

The minimum value of this function thus occurs at about time t = 33.0133. To the nearest
whole number, the minimum number of people is 4.

2 Problem 2

2.1 Part a

If p(h) = 0.2h2e−0.0025h
2

for 0 ≤ h ≤ 20, then, because

p′(h) = 0.4he−0.0025h
2 − 0.001h3e−0.0025h

2
, (10)

p′(25) ∼ −1.179. (11)

The quantity p′(25) gives the rate, in millions of cells per cubic meter, at which the density
of plankton cells increases as h increases. (The fact that p′(25) < 0 means that, at a depth
of 25 meters, density decreases as depth increases.)

2



2.2 Part b

According to this model, the number of millions of plankton cells in a vertical column of
water of constant cross-sectional area 3 square meters and extending over 0 ≤ h ≤ 30
is

3

∫ 30

0
p(h) dh = 0.6

∫ 30

0
h2e−0.0025h

2
dh ∼ 1675.415. (12)

Thus, to the nearest million, there are 1675 million plankton cells in the column of wa-
ter.

2.3 Part c

We suppose that K denotes the depth of the bottom of this 30-foot column. (The problem
statement is unclear about what it means for the column to be “K meters deep.”) There
are two cases: either K < 60 or K ≥ 60. In the second case, the entire column is at a depth
of at least 30 feet, and the number of plankton in the column is

3

∫ K

K−30
f(h) dh, (13)

and we have (because K − 30 ≥ 30)

3

∫ K

K−30
f(h) dh ≤ 3

∫ K

K−30
u(h) dh ≤ 3

∫ ∞
30

u(h) dh < 3 · 105 = 315 < 2000. (14)

If, on the other hand, we haveK < 60, then, because also 30 < K, the number of plankton
in the column is

3

∫ 30

K−30
p(h) dh+ 3

∫ K

30
f(h) dh. (15)

Here, we may write

3

∫ 30

K−30
p(h) dh+

∫ K

30
f(h) dh ≤ 3

∫ 30

0
p(h) dh+ 3

∫ ∞
30

u(h) dh (16)

≤ 1676 + 106 = 1782 < 2000. (17)
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2.4 Part d

The total distance traveled by the boat over the time interval 0 ≤ t ≤ 1 is∫ 1

0

√
[x′(τ)]2 + [y′(τ)]2 dτ =

∫ 1

0

√
438244 sin2 5τ + 774400 cos2 6τ dτ. (18)

The integral is not elementary, so we integrate numerically to find that∫ 1

0

√
[x′(τ)]2 + [y′(τ)]2 dτ ∼ 757.456 meters. (19)

3 Problem 3

3.1 Part a

By the Fundamental Theorem of Calculus,

f(x) = 3 +

∫ x

1
g(t) dt, (20)

so g(−5) is 3 added to, reading from the graph, the sum of the area of a 3 × 3 square, the
area of a triangle of base 1 and height 3 and the negative of a triangle of base 1 and height
2. That’s

3 + 32 +
1

2
· 1 · 3− 1

2
· 1 · 2 =

25

2
. (21)

3.2 Part b

We have ∫ 6

1
g(t) dt =

∫ 3

1
2 dt+ 2

∫ 6

3
(t− 4)2 dt (22)

= 2 · 2 + 2

3
(t− 4)3

∣∣∣∣6
3

(23)

= 4 +
2

3
[8− (−1)] = 10. (24)
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3.3 Parts c & d

There are thorny issues with these two questions—not because they involve difficult
mathematics, but because there is no general agreement about a formal definition for the
term “concave upward” (or for its sibling term “concave downward”). And so, of course,
there can’t be general agreement about what an “inflection point” is, either. To make
matters worse, even those who agree on their definitions for the two flavors of concavity
disagree about what inflections points are. (The most obvious difference is that some in-
sist that there must be a line tangent to the original curve at a point if it is to qualify as
an inflection point; others omit this requirement. There are other different ways of seeing
inflection points, but this is not the place to explore them.)

Some people take a region of upward concavity to be a region (which may, or may not,
be required to be open, depending on whom we’re reading) where the derivative is in-
creasing, others a region where the tangent line lies below the curve near the point of
tangency. Some take positivity of the second derivative to be (to be—not to imply) upward
concavity. Still others define a function F to be concave upward on an interval I provided
that for any pair x1 < x2 of points in I and any number α between 0 and 1 it is true that
F [αx1+(1−α)x2] ≤ αF (x1)+ (1−α)F (x2)—that is, no matter what points x1 and x2 we
choose in I , the curve y = F (x) never rises above the line segment connecting the points(
x1, F (x1)

)
and

(
x2, F (x2)

)
. (Of course, these are not the only ways of defining “concave

upward.”)

Figures 1 and 2 show the graphs of f and f ′′ = g′ respectively. It is clear from the graph
that if we adopt the last definition we gave for upward concavity—the one in terms of line
segments lying above the curve—then f is concave upward on [−5, 3] and on [4, 6].

If, on the other hand, we think that a function is concave upward just in those regions
where its second derivative is positive, we must conclude that f is concave upward on
the intervals (−2,−1), (0, 1), and (4, 6).

That folks use the term “increasing” in different ways adds a bit of spice. (Some folks
require that f(α) < f(β) when α < β and both are in I , some only that f(α) ≤ f(β), for f
to be increasing on .

It should be clear now that someone can reasonably assert that f is increasing and con-
cave upward on the intervals (−1, 3) and (4, 6) while someone else can assert—just as
reasonably—that f is both increasing and concave upward just on the intervals (0, 1) and
(4, 6). It is only when we know precisely what these people are using for their definitions
that we can decide whether they’re right or wrong.

Different (correct) decisions about different meanings for upward and downward concav-
ity can clearly lead to different (correct) decisions about inflection points.
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Figure 1: y = f(x) = 3 +
∫ x
1 g(t) dt
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Figure 2: The graph of f ′′(x) = g′(x)
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Students in elementary calculus will almost certainly have seen just one definition for each
of their concepts; they won’t even know that different people might use substantially dif-
ferent definitions. So it’s very unlikely that these students will refer to their definitions—
let alone state them in full—in the answers they give to these questions.

All definitions of concavity that I’ve seen yield the theorem that tells us that a function
whose second derivative is positive on an interval is necessarily concave upward on that
interval. My guess is that the development committee looked (and the readers will look)
at f ′′(x), observed (will observe) that it changes sign at just one point—at x = 4—and
concluded (will conclude) that there is just one inflection point, which is at x = 4.

It’s very unusual for the development committee to pose such an ambiguous problem.
What the readers will do with the mess is anybody’s guess. I’m glad I don’t have to
decide.

4 Problem 4

4.1 Part a

From the table, we estimate

H ′(6) ∼ H(7)−H(5)

7− 5
=

11− 6

7− 5
=

5

2
. (25)

The number H ′(6) gives, in meters per year, the rate at which the tree is growing at time
t = 6.

4.2 Part b

The function H is given twice differentiable, presumably (though the problem statement
is vague about this) at least on the interval (2, 10), so it is continuous on the interval
[3, 5] and differentiable on the interval (3, 5). The hypotheses of the mean value theorem
being satisfied, there must be at least one point ξ in the interval (3, 5), and therefore in the
interval (2, 10), such that

H ′(ξ) =
H(5)−H(3)

5− 3
=

6− 2

5− 3
=

4

2
= 2. (26)
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4.3 Part c

The required trapezoidal sum is
1

10− 2
=

1

8
times

1

2
[H(2) +H(3)](3− 2) +

1

2
[H(3) +H(5)](5− 3)

+
1

2
[H(5) +H(7)](5− 7) +

1

2
[H(10) +H(7)](10− 7)

=
1

2
[(1.5 + 2)(3− 2) + (2 + 6)(5− 3) + (6 + 11)(7− 5) + (11 + 15)(10− 7)] (27)

=
1

2
(3.5 · 1 + 8 · 2 + 17 · 2 + 26 · 3) = 65.75. (28)

The average height during the period 2 ≤ t ≤ 10 is therefore 8.219 meters, to three decimal
places.

4.4 Part d

We are given

G(x) =
100x

1 + x
, (29)

where x is the diameter, in meters, of the base of the tree and h = G(x) is the height, also
in meters, of the tree. We have

dh

dt
=
dh

dx
· dx
dt
. (30)

Now

dh

dx
=

d

dx

(
100x

1 + x

)
=

100

(1 + x)2
, (31)

andG(x) = h = 50 implies that x = 1, so that we have been given
dx

dt

∣∣∣∣
h=50

= 0.03. Putting

this all together, we find that

dh

dt

∣∣∣∣
h=50

=

(
dh

dx

∣∣∣∣
h=50

)(
·dx
dt

∣∣∣∣
h=50

)
=

100

(1 + 1)2
· 0.03 = 0.75 meters/year. (32)
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5 Problem 5

5.1 Part a

The area, A, outside the polar curve r = 3 + 2 cos θ but inside the curve r = 4 is∫ π

π/3

[
16− (3 + 2 cos θ)2

]
dθ =

∫ π

π/3

(
7− 12 cos θ − 4 cos2 θ

)
dθ (33)

=
1

6

(
39
√
3 + 20π

)
. (34)

(Evaluation of the integral is not required; we give it for the sake of completeness.)

5.2 Part b

On the curve r = 3 + 2 cos θ, we have

x(θ) = r(θ) cos θ = 3 cos θ + 2 cos2 θ, (35)

and

y(θ) = r(θ) sin θ = 3 sin θ + 2 sin θ cos θ (36)
= 3 sin θ + sin 2θ. (37)

Therefore,

dy

dx
=
y′(θ)

x′(θ)
=

3 cos θ + 2 cos 2θ

−3 sin θ − 4 sin θ cos θ
(38)

=
y′(θ)

x′(θ)
=

3 cos θ + 2 cos 2θ

−3 sin θ − 2 sin 2θ
(39)

It follows that

dy

dx

∣∣∣∣
θ=π/2

=
3 cos(π/2) + 2 cos 2(π/2)

−3 sin(π/2)− 2 sin 2(π/2)
=

0− 2

−3− 0
=

2

3
, (40)

so the slope of the line tangent to the curve r = 3 + 2 cos θ at the point where θ = π/2 is
2/3.
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5.3 Part c

The distance from the particle to the origin is r = 3 + 2 cos θ, and we are given
dr

dt
≡ 3.

Moreover, if r = 3 + 2 cos θ, then

cos θ =
1

2
(r − 3), (41)

so that

− sin θ · dθ
dr

=
1

2
, (42)

and

dθ

dr
= − 1

2 sin θ
. (43)

For the rate at which the angle changes with respect to time, we have

dθ

dt

∣∣∣∣
θ=π/3

=

(
dθ

dr

∣∣∣∣
θ=π/3

)
·

(
dr

dt

∣∣∣∣
θ=π/3

)
(44)

= − 1

2 sinπ/3
· 3 = − 3√

3
= −
√
3. (45)

6 Problem 6

6.1 Part a

The first four nonzero terms, and the general term, of the Maclaurin series for

f(x) = x ln(1 + x/3) = 3
(x
3

)
ln
[
1 +

x

3

]
(46)

are

x

(
x

3
− x2

2 · 32
+

x3

3 · 33
− x4

4 · 34
+ · · ·+ (−1)n+1 xn

n · 3n
+ · · ·

)
, (47)

or

x2

3
− x3

2 · 32
+

x4

3 · 33
− x5

4 · 34
+ · · ·+ (−1)n+1 x

n+1

n · 3n
+ · · · (48)
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6.2 Part b

We can obtain the Maclaurin series for f(x) = ln
(
1 +

x

3

)
by observing that

ln
(
1 +

x

3

)
=
[
ln
(
1 +

x

3

)
− ln(1 + 0)

]
(49)

= ln(3 + x)− ln 3 (50)

= ln(3 + t)

∣∣∣∣t=x
t=0

(51)

=

∫ x

0

(
d

dt
[ln(3 + t)]

)
dt (52)

=

∫ x

0

dt

3 + t
(53)

=
1

3

∫ x

0

dt

1− (−t/3)
(54)

=
1

3

∫ x

0

[ ∞∑
k=0

(−1)k t
k

3k

]
dt (55)

=
1

3

∞∑
k=0

(∫ x

0

[
(−1)k t

k

3k

]
dt

)
(56)

=
1

3

∞∑
k=0

(−1)k xk+1

(k + 1)3k
. (57)

Interchanging the sum and the integral are valid within the interval of convergence of the
series we see in (55), and the interiors of the intervals of convergence of the two series
are identical. But the series of (55) is a geometric series, and the interior of its interval of
convergence is (−3, 3)—which means that the same is true of the series in (57).

Distributing the initial factor of 1/3 over the series of (57) doesn’t change the interior of
the interval of convergence.

Further multiplication of every term in the series by x yields the series of (48)—which
therefore also has an interval of convergence whose interior is (−3, 3).

All that remains is to check behavior at the endpoints.

When x = 3,

∞∑
k=0

(−1)k xk+2

(k + 1)3k+1
= 3− 3

2
+

3

3
− 3

4
+ · · · . (58)
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This is the alternating harmonic series (multiplied by a factor of 3, which doesn’t change
its convergence properties), which we know to be convergent.

When x = −3,

∞∑
k=0

(−1)k xk+2

(k + 1)3k+1
=

∞∑
k=0

(−1)2k+23

k + 1
= 3 +

3

2
+

3

3
+

3

4
+ · · · , (59)

and this is, except for the common factor 3, the harmonic series, which we know to be
divergent.

We conclude that the series of (48) converges on (−3, 3] and diverges outside that inter-
val.

6.3 Part c

In our case, the fourth degree Maclaurin polynomial for f(x) = x ln
(
1 +

x

3

)
is

T4(x) =
x2

3
− x3

18
+
x4

81
(60)

=
x2

3

[
1− x

6
+
x2

27

]
. (61)

The magnitude of first term of the series that we haven’t used is∣∣∣∣− x5

324

∣∣∣∣ ∣∣∣∣
x=2

=
8

81
. (62)

This is the desired error bound.
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