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1. Solution: We begin by writing r0 = 0, r1 = 1, r2 = 2, r3 = 2.5, and r4 = 4.

(a) To approximate f ′(2.25) from the given data, we write

f ′(2.25) ∼ f(2.5)− f(2.0)

2.5− 2.0
=

10− 6

2.5− 2.0
=

4

0.5
= 8. (1)

Thus, f(2.25) ∼ 8 mg/cm3. This means that as we move directly outward from
the center of the Petri dish, the density of bacteria is increasing at about the per-
centimeter-rate of 8 milligrams per square centimeter at a point 2.25 centimeters
from the center.

(b) The required right Riemann sum to approximate 2π

∫ 4

0
rf(r) dr is

2π

4∑
k=1

rkf(rk)(rk − rk−1) = 2π (1 · 2 · 1 + 2 · 6 · 1 + 2.5 · 10 · 0.5 + 4 · 18 · 1.5) mg.

(2)

This is 269π mg.

(c) It is given that f is an increasing function. It follows that for any integer
k = 1, 2, 3, 4 and rk−1 ≤ r < rk, then rf(r) < rf(rk) < rkf(rk). Hence, for all
such k, we must have∫ rk

rk−1

rf(r) dr <

∫ rk

rk−1

rkf(rk) dr < rkf(rk)(rk − rk−1). (3)

We now see that∫ 4

0
rf(r) dr =

4∑
k=1

∫ rk

rk−1

rf(r) dr <

4∑
k=1

rkf(rk)(rk − rk−1). (4)

The right Riemann sum is therefore an overestimate for the corresponding inte-
gral.
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(d) The average value of g on [1, 4] is

2π

4

∫ 4

1
g(r) dr = π

∫ 4

1

[
1− 8 cos3(1.57

√
r)
]
dr. (5)

Carrying out a numerical integration, we find that the required average value is
about 44.186 milligrams per square centimeter.

2. Solution:

(a) Speed at time t, s(t), of a particle whose velocity vector is v(t) = 〈x(t), y(t)〉, is
given by

s(t) = ‖v(t)‖ =
√
v(t) · v(t)〉. (6)

Here, we have v(t) = 〈(t− 1)et
2
, sin t1.25〉, so

s(t) =

√
(t− 1)2e2t2 + sin2 t1.25. (7)

Thus, s(1.2) =
√

(1.2− 1)2e2(1.2)2 + sin2(1.2)1.25 ∼ 1.271.

Acceleration at time t, a(t) is a(t) = v(t), so

a(t) = 〈et2 + 2tet
2
(t− 1), 1.25t0.25 cos t1.25〉, and (8)

a(1.2) ∼ 〈6.247, 0.405〉. (9)

(b) Distance traveled over the time interval [a, b] is

∫ b

a
s(τ) dτ , so the required

distance is ∫ 1.2

0

√
(τ − 1)2e2τ2 + sin2 τ1.25 dτ ∼ 1.010, (10)

where we have carried out the integration numerically.

(c) The particle is farthest to the left for t ∈ [0,∞) when x(t) assumes its global
minimum value on that interval. At this point, either t = 0 or x′(t) = 0. But

x′(t) = (2t2 − 2t+ 1)et
2
, (11)

and this quantity vanishes only when the quadratic polynomial 2t2 − 2t + 1
vanishes. This quadratic has no real zeros, so x′(t) does not vanish on [0,∞).
We conclude that our particle is farthest to the left when t = 0.

There can be no time when the particle is farthest to the right. Such a time
would be a global maximum for x(t) on [0,∞), so would also have to be either
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when t = 0 or when x′(t) = 0. We have seen that t = 0 gives the global minimum
on the interval, and, because x(t) is non-constant, cannot give the maximum.
We have also seen that x′(t) does not vanish on [0,∞). Thus, there can be no
global maximum.

We could also arrive at this conclusion by observing that et
2

is always positive
on [0,∞) and 2t2−2t+1 = t1+(t−1)2 is also positive throughout [0,∞). From
this, it follows that x′(t), which is the product of these two latter quantities,
is positive throughout [0,∞). This guarantees that x(t) increases strictly from
x(0) on [0,∞).

3. Solution:

(a) The area in the first quadrant bounded by the x-axis and the curve y =
6x
√

4− x2 is

3

∫ 2

0

√
4− x2 · 2x dx = −2(4− x2)3/2

∣∣∣∣2
0

= −0 + 16 = 16 in2 (12)

(b) If y is as above, y′ =
c(4− 2x2)√

4− x2
and y′ = 0 for 0 ≤ x ≤ 2, then x =

√
2. We are

given c > 0, so because y = 0 when x = 0 or x = 2 and y > 0 when 0 < x < 2, we
see that y assumes its absolute minimum on [0, 2] at the endpoints. Applying
the Extreme Value Theorem y, which depends continuously on x throughout
the closed, bounded interval [0, 2], must have an absolute maximum somewhere
interior to that interval. By Fermat’s Theorem that maximum must occur at
a value of x where y′ = 0. There being only one such value, it must yield
the maximum. Because y gives, for each x, the radius of the corresponding
cross-sectional slice, we conclude that

1.2 = c
√

2

√
4− (

√
2)2 = 2c. (13)

It follows that c = 0.6

(c) The volume of the spinning toy generated by the curve y = cx
√

4− x2 is

c2π

∫ 2

0
x2(4− x2) dx = c2π

∫ 2

0
(4x2 − x4) dx (14)

= c2π

(
4
x3

3
− x5

5

) ∣∣∣∣2
0

= c2π

(
32

3
− 32

5

)
=

64

15
c2π. (15)

If this is to be 2π, we must have c =

√
30

8
.

4. Solution:
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(a) If G(x) =

∫ x

0
f(t) dt, then, according to the Fundamental Theorem of Calculus,

G′(x) = f(x). Now G is concave upward on those open intervals where G′(x) =
f(x) is increasing. Because we see from its graph that f is increasing on [−4,−2]
and on [2, 6], we conclude that G is concave upward on (−4,−2) and on (2, 6).

(b) If P (x) = G(x) · f(x), then

P ′(x) = G′(x) · f(x) +G(x) · f ′(x), (16)

so

P ′(3) = G′(3) · f(3) +G(3) · f ′(3) (17)

= f(3) · f(3) +G(3) · f ′(3). (18)

Now

f(3) = −3, (19)

f ′(3) =
f(6)− f(2)

6− 2
=

0− (−4)

6− 2
= 1, (20)

and

G(3) =
f(0) + f(2)

2
· 2 +

f(2) + f(3)

2
· 1 (21)

=
4 + (−4)

�2
· �2 +

−4 + (−3)

2
· 1 = −7

2
(22)

so

P ′(3) = (−3)2 + 1 ·
(
−7

2

)
(23)

=
11

2
. (24)

(c) Now

G(2) =

∫ 2

0
f(t) dt =

f(0) + f(2)

�2
· �2 = 4 + (−4) = 0, (25)

and G, by the Fundamental Theorem of Calculus, is continuous. This means
that lim

x→2
G(x) = G(2) = 0. Also, lim

x→2
(x2 − 2x) = 4 − 4 = 0, so we may apply

l’Hôpital’s rule to obtain

lim
x→2

G(x)

x2 − 2x
= lim

x→2

f(x)

2x− 2
, (26)
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provided that the latter limit exists. But from the graph, we see that lim
x→2

f(x) =

−4. Hence, the limit on the right side of (26) exists and is −4/2 = −2. We
conclude, by l’Hôpital’s rule, that

lim
x→2

G(x)

x2 − 2x
= −2. (27)

(d) The average value, A, of the rate of change of G on the interval [−2, 4] is given
by

A =
1

4− (−2)

∫ 4

−2
G′(t) dt (28)

=
1

6

∫ 4

−2
f(t) dt (29)

=
1

6

∫ 0

−2
f(t) dt+

1

6

∫ 4

0
f(t) dt (30)

=
1

12

[
f(−2) + f(0)

]
· 2 +

1

12

[
f(0) + f(2)

]
· 2 +

1

12

[
f(2) + f(4)

]
· 2 (31)

=
6 + 4

6
+

4− 4

6
+
−4 + (−2)

6
=

2

3
. (32)

(The trapezoidal integration is justified by the fact that f is piecewise linear
and the appropriate choice of points within the interval of integration.)

(e) The function G is, by the Fundamental Theorem of Calculus, continuous on the
interval [−2, 4] and differentiable on the interval (−2.4); moreover, G′(x) = f(x)
for −2 < x < 4. The Mean Value Theorem therefore guarantees the existence
of ξ ∈ (−2, 4) such that

f(ξ) = G′(ξ) =
G(4)−G(−2)

4− (−2)
=

1

6
[G(4)−G(−2)] . (33)

But then by the definition of G

G′(ξ) =
1

6

[ ∫ 4

0
f(t) dt−

∫ −2
0

f(t) dt

]
(34)

=
1

6

[ ∫ 0

−2
f(t) dt+

∫ 4

0
f(t) dt

]
=

1

6

∫ 4

−2
f(t) dt (35)

According to (29), this is just A, so the answer is “Yes, the Mean Value Theorem
guarantees a value ξ, −4 < ξ < 2, for which G′(ξ) is the average rate of change
of G on [−4, 2].”
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Remark: It isn’t at all difficult—though it is a bit tedious—by reading the given
graph, to write an explicit piecewise representation of the function f , and, thereby,
of the function G.

The function f is given by

f(t) =


3(t+ 4) = 3t+ 12; −4 ≤ f < −2

6− (t+ 2) = −t+ 4; −2 ≤ t < 0

4− 4t = −4t+ 4; 0 ≤ t < 2

−4 + (t− 2) = t− 6; 2 ≤ t < 6.

(36)

Carrying out the necessary integrations, we find that

(37)

G(x) =


3
2x

2 + 12x+ 8; −4 ≤ t < −2

−1
2x

2 + 4x; −2 ≤ x < 0

−2x2 + 4x; 0 ≤ x < 2
1
2x

2 − 6x+ 10; 2 ≤ x ≤ 6.

(38)

5. Solution:

(a) From y′ = xy lnx, y(1) = 4 we find that y′(1) = 0. The second degree Tayor
polynomial, T (x), for y about x = 1 is then

T (x) = y(1) + y′(1)(x− 1) +
1

2
y′′(1)(x− 1)2 (39)

= 4 + 0 · (x− 1) +
1

2
· 2 · (x− 1)2 (40)

= 4 + (x− 1)2. (41)

At x = 2, we then write

f(2) ∼ T (2) = 4 + (2− 1)2 = 5. (42)

(b) Applying Euler’s method with stepsize h = 1/2, beginning at x = 1, we write:

y1 ∼ y0 + f ′(x0)h = 4 + 0 · 1

2
= 4; (43)

y2 ∼ y1 + f ′(x1)h = 4 + x1y1h lnx1 = 4 +
3

2
· 4 · 1

2
· ln 3

2
∼ 5.216. (44)
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(c) We note first that, integrating by parts, we have∫
x lnx dx =

x2

2
· lnx− 1

2

∫
x dx =

x2

2
lnx− x2

4
. (45)

Now we multiply the equation y′ = xy lnx through by e
x2

4
−x2

2
lnx, to obtain(

e
x2

4
−x2

2
lnx

)
y′ −

(
e

x2

4
−x2

2
lnx · x lnx

)
y = 0, or (46)

d

dx

(
e

x2

4
−x2

2
lnxy

)
= 0. (47)

If follows that there is a real number C such that

e
x2

4
−x2

2
lnxy ≡ C. (48)

But we know that y = 4 when x = 1. Hence,

C = e
12

4
− 12

2
ln 1 · 4 = 4e

1
4 . (49)

We conclude that the desired solution to the initial value problem is given (writ-
ing, as is common, exp(u) for eu) by

y = 4 exp

(
x2

2
lnx− x2

4
+

1

4

)
(50)

6. Solution:

(a) The integral test for the convergence or divergence of a series tells us that if F
is a non-negative function on [1,∞) which is continuous and non-increasing on

[1,∞), then
∞∑
k=1

F (k) converges if and only if the improper integral

∫ ∞
1

F (t) dt

converges.

Let F (t) =
1

et
= e−t. Then F is positive-valued and continuous (in fact, differ-

entiable) on [1,∞), Moreover, F ′(t) = −e−t, which is negative for all t. Hence,
F is decreasing (which is surely non-increasing) on [1,∞). Because∫ ∞

1
e−t dt = lim

T→∞

∫ T

1
e−t dt (51)

= − lim
T→∞

e−t
∣∣∣∣T
1

(52)

= lim
T→∞

(
e−1 − e−T

)
= e−1 (53)
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converges, we may conclude—by the integral test—that the series

∞∑
k=1

e−k con-

verges.

(b) If ak =
(−1)k

2ek + 3
, and bk = e−k, then

lim
k→∞

|ak|
|bk|

= lim
k→∞

ek

2ek + 3
(54)

= lim
k→∞

1

2 + 3e−k
=

1

2 + 0
=

1

2
<∞. (55)

It follows, by the limit comparison test, that
∞∑
k=0

1

2ek + 3
converges, so that

∞∑
k=0

(−1)k

2ek + 3
is an absolutely convergent series.

(c) We apply the ratio test to the series for g(x):
∞∑
k=0

ak, where ak =
(−1)kxk

2ek + 3
. This

gives

lim
k→∞

|ak+1|
|akl

= lim
k→∞

(
|x|k+1

2ek+1 + 3
· 2ek + 3

|x|k

)
(56)

= |x| lim
k→∞

2 + 3e−k

2e+ 3e−k
= e−1|x|. (57)

This is less than one when |x| < e. By the ratio test, the radius of convergence

for the series
∞∑
k=0

(−1)kxk

2ek + 3
is e.

(d) The magnitude of the error in an approximation by means of an alternating
series does not exceed the magnitude of the first term of the series not used in
that approximation. In this case, the quantity g(1) is approximated by the first

two terms of the series

∞∑
k=0

(−1)kxk

2ek + 3
, taking x = 1. The first term not used is

the term that corresponds to k = 2, for which∣∣∣∣(−1)kxk

2ek + 3

∣∣∣∣ =
1

2e+ 3
. (58)

The error in the two-term approximation of g(1) by means of its Maclaurin series

does not exceed
1

2e+ 3
∼ 0.1185317. According to the instructions in force
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for this examination, this result may be rounded, either to 0.118 or to 0.119.
Because we want the number we seek to be an upper bound, it is preferable to
round to 0.119. (We have no basis to guarantee, a priori, that 0.118 really is an
upper bound.)
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