Solutions to
 2022 AP Calculus AB Free Response Questions

Louis A. Talman, Ph. D.

Emeritus Professor of Mathematics
Metropolitan State University of Denver
May 13, 2022

1. We are given, effectively, $A(t)=450 \sqrt{\sin (0.62 t)}$, where $0 \leq t \leq 10$, as the rate-in vehicles per hour-at which vehicles arrive at a toll plaza, with t representing the time elapsed since 5 A.M.
(a) The total number of vehicles that arrive at the toll plaza between $t=1$ and $t=5$ is $\int_{1}^{5} A(t) d t$. Evaluation is not required, but numerical integration gives

$$
\begin{equation*}
\int_{1}^{5} A(t) d t=450 \int_{1}^{5} \sqrt{\sin (0.62 t)} d t \sim 1502.148 \text { vehicles. } \tag{1}
\end{equation*}
$$

(b) The average value of the rate at which vehicles arrive at the toll plaza from $t=1$ to $t=5$ is (to three decimal places)

$$
\begin{equation*}
\frac{1}{5-1} \int_{1}^{5} A(t) d t \sim 375.537 \text { vehicles per hour, } \tag{2}
\end{equation*}
$$

where we have replaced the integral with the value we obtained numerically in the previous part of this problem.
(c) We find that

$$
\begin{equation*}
A^{\prime}(t)=\frac{139.5 \cos (0.62 t)}{\sqrt{\sin (0.62 t)}} \tag{3}
\end{equation*}
$$

whence $A^{\prime}(1) \sim 148.947>0$. The derivative of the function A is positive when $t=1$, so A, the rate at which vehicles arrive at the toll plaza at 6 A.M, is increasing at that time.
(d) We are given that

$$
\begin{equation*}
N(t)=\int_{a}^{t}[A(x)-400] d x \tag{4}
\end{equation*}
$$

where a is the time when A is 400. By the Fundamental Theorem of Calculus, this means that $N^{\prime}(t)=A(t)-400$.
Solving numerically, we find that $A(t)=400$ when $t \sim 1.469$, so $a \sim 1.469$. Solving numerically, we find that $\left.N^{\prime} t\right)=0$ when $t=a$ (Duh!) and when $t \sim 3.598$.. Consequently, the maximum value of N on the interval $[a, 4]$ occurs at $t=a$, when $t \sim 3.598$, or when $t=4$. We find that

$$
\begin{align*}
N[a] & =0, \tag{5}\\
N[3.598] & \sim 71.254, \tag{6}\\
N[4] & \sim 62.338 . \tag{7}
\end{align*}
$$

From this we conclude that, to the nearest whole vehicle, the length of the line reaches a maximum about 71 vehicles at about 8:36 A.M.
2. (a) Solving numerically, we find that B, the value near $x=1$ where the two curves cross, is about 0.78198 . So the area of the region enclosed by the two graphs is, to three decimal places,

$$
\begin{align*}
\int_{-2}^{B}\left[\ln (x+3)-\left(x^{4}+2 x^{3}\right)\right) d x & =(x+3) \ln (x+3)-x-\frac{1}{2} x^{4}-\left.\frac{1}{5} x^{5}\right|_{-2} ^{B} \tag{8}\\
& \sim 3.604 \tag{9}
\end{align*}
$$

(b) The vertical distance, h, between the curves is given by $h(x)=f(x)-g(x)$ on the interval $[-2, B]$. On this interval, we have

$$
\begin{align*}
h^{\prime}(x) & =f^{\prime}(x)-g^{\prime}(x) \tag{10}\\
& =\frac{1}{x+3}-4 x^{3}-6 x^{2}, \text { whence } \tag{11}\\
h^{\prime}(-0.5) & =-0.6<0 . \tag{12}
\end{align*}
$$

This derivative is continuous, and $h^{\prime}(x)$ is therefore negative in some interval centered at $x=-0.5$. When its derivative is negative on an interval, the function is decreasing on that interval, so h is decreasing near $x=-0.5$.
Note: Very few elementary calculus textbooks define the terms increasing or decreasing except in reference to intervals, leaving the phrase "decreasing at a point" meaningless. The function u, given by

$$
u(x)= \begin{cases}x^{2} \sin \frac{1}{x}-2 x, & x \neq 0 \tag{13}\\ 0, & x=0\end{cases}
$$

is one of a function u for which $u^{\prime}(0)$ is negative, even though u is decreasing on no open interval centered at $x=0$.
(c) The area of a cross section whose horizontal coordinate is $x=t$, is $A(t)=[h(t)]^{2}$, the function h being as above. Hence the volume of the solid in question is

$$
\begin{align*}
V & =\int_{-2}^{B} A(t) d t \tag{14}\\
& =\int_{-2}^{B}\left[\ln (x+3)-\left(x^{4}+2 x^{3}\right)\right]^{2} d x \tag{15}
\end{align*}
$$

One can carry out this antidifferentiation by elementary means, but the computation is too horrible to contemplate under examination conditions. We calculate numerically to find that $V \sim 5.340$, to three decimal places.
(d) The area of the cross-section at $t=x$ is $A(x)$, where A is as defined in the previous part of this problem. If the x-coordinate of the cross-section moves rightward with velocity $\frac{d x}{d t}$, then

$$
\begin{align*}
\frac{d}{d t} A(x) & =\frac{d}{d t}[f(x)-g(x)]^{2} \tag{16}\\
& =2\left[\ln (x+3)-\left(x^{4}+2 x^{3}\right)\right]\left[\frac{1}{x+3}-\left(4 x^{3}+6 x^{2}\right)\right] \frac{d x}{d t} . \tag{17}
\end{align*}
$$

Putting $x=-0.5$ and $\frac{d x}{d t}=7$ gives $\frac{d}{d t} A(x) \sim-9.272$. At the time specified, the rate of change of the area of the cross-section with respect to time is, to three decimal places, -9.272 square units per second.
3. (a) By the Fundamental Theorem of Calculus and what is given,

$$
\begin{align*}
f(x) & =f(4)+\int_{4}^{x} f^{\prime}(t) d t \tag{18}\\
& =3+\int_{4}^{x} f^{\prime}(t) d t \tag{19}
\end{align*}
$$

In fact, f^{\prime} is given by

$$
f^{\prime}(t)= \begin{cases}-\sqrt{4 t-t^{2}}, & 0 \leq t<4 \tag{20}\\ t-4, & 4 \leq t<6 \\ 8-t, & 6 \leq t \leq 1\end{cases}
$$

However, we will make no use of this fact.

Because the portion of the f^{\prime} curve from $t=0$ to $t=4$ is a semi-circle of radius 2 lying below the horizontal axis whose diameter is the horizontal axis, $\int_{0}^{4} f^{\prime}(t) d t=-2 \pi$. The portion of the curve over the interval $[4,5]$ is a straight line that forms, with the horizontal axis, a triangle of base 1 and altitude 1 , so $\int_{4}^{5} f^{\prime}(t) d t=\frac{1}{2}$. From these facts, we find that

$$
\begin{align*}
& f(0)=3+\int_{4}^{0} f^{\prime}(t) d t=3-\int_{0}^{4} f^{\prime}(t) d t=3+2 \pi \tag{21}\\
& f(5)=3+\int_{4}^{5} f^{\prime}(t) d t=3+\frac{1}{2}=\frac{7}{2} \tag{22}
\end{align*}
$$

(b) A function has an inflection point where its derivative has a local maximum or a local minimum - that is, where its derivative changes from being increasing to being decreasing or vice versa. We see from the given graph that $f^{\prime}(x)$ has a local minimum at $x=2$ and that $f^{\prime}(t)$ has a local maximum at $x=6$. Consequently, f has inflection points at $x=2$ and and $x=6$.
Note: Some elementary textbooks require that the second derivative be defined at an inflection point. If we adopt this definition, f has just one inflection point, at $x=2$.
(c) The function g defined by $g(x)=f(x)-x$ is decreasing on the closures of those intervals where $g^{\prime}(x)<0$-that is, where $f^{\prime}(x)-1<0$, which is to say $f^{\prime}(x)<1$. We see from the given graph that these inequalities hold for those, and only those, values of x which are less than 5 . Hence f is decreasing on the interval $[0,5]$.
(d) The absolute minimum value of g on the interval $[0,7]$ exists because, as the integral of a continuous derivative, g is itself a continuous, differentiable, function on that interval. We know that the absolute minimum of such a function must occur either at an endpoint of the interval or at a point where the derivative is zero. So we must evaluate g at $x=0$, at $x=7$, and at $x=5$, the latter point being the point only point in the interval where $g^{\prime}(x)=f^{\prime}(x)-1=0$. From the first part of this problem, we have

$$
\begin{align*}
& g(0)=f(0)-0=3+2 \pi \tag{23}\\
& g(5)=f(5)-5=\frac{7}{2}-5=-\frac{3}{2} \tag{24}
\end{align*}
$$

It is easy to see from the geometry of the curve that $\int_{4}^{6} f^{\prime}(t) d t=2$ and that

$$
\begin{align*}
& \int_{6}^{7} f^{\prime}(t) d t=\frac{3}{2} \text {. Therefore, } \\
& \qquad \begin{aligned}
g(7) & =f(7)-7=\left[3+\int_{4}^{7} f^{\prime}(t) d t\right]-7 \\
& =\left[\int_{4}^{6} f^{\prime}(t) d t+\int_{6}^{7} f^{\prime}(t) d t\right]-4 \\
& =2+\frac{3}{2}-4=-\frac{1}{2}
\end{aligned} \tag{25}
\end{align*}
$$

We conclude that the absolute minimum value of g on $[0,7]$ is $g(5)=-\frac{3}{2}$.
4. (a) We can approximate $r^{\prime \prime}(8.5)$, in centimeters $/$ day 2, by

$$
\begin{equation*}
r^{\prime \prime}(8.5) \sim \frac{r(10)-r(7)}{10-7}=\frac{(-3.8)-(-4.4)}{3}=0.2 \mathrm{~cm} / \text { day }^{2} . \tag{28}
\end{equation*}
$$

(b) We expect derivative of the radius of the base of a melting cone of ice to be continuous as a function of time. Under the assumption that this is so, there must be a t_{0} between $t=0$ and $t=3$ where $r\left(t_{0}\right)=-6$, because $r(3)=-5.0$, and $r(0)=-6.1$-so the Intermediate Value Theorem for Continuous Functions guarantees the existence of such a t_{0}. Note: In fact, continuity of r^{\prime} is not needed; derivatives always have the intermediate value property-but this is rarely shown, or even stated as a fact, in elementary calculus courses. The fact is known as "Darboux's Theorem," and it is a standard part of a good advanced calculus course.
(c) Using the values from the given table in a right Riemann sum, we have

$$
\begin{align*}
\int_{0}^{12} r^{\prime}(t) d t & \sim r^{\prime}(3)(3-0)+r^{\prime}(7)(7-3)+r^{\prime}(10)(10-7)+r^{\prime}(10)(12-10) \tag{29}\\
& \sim(-5.0) \cdot 3+(-4.4) \cdot 4+(-3.8) \cdot 3+(-3.5) \cdot 2=-51.0 \tag{30}
\end{align*}
$$

(d) Let $h(t)$ denote the height of the cone at time t; in addition to the information in the table, we are given $r(3)=100$ and $h(3)=50$. We know that the volume of the cone at time t is given by $V(t)=\frac{\pi}{3}[r(t)]^{2} h(t)$, and from this we see that

$$
\begin{equation*}
V^{\prime}(t)=\frac{\pi}{3}\left[2 r(t) h(t) r^{\prime}(t)+[r(t)]^{2} h^{\prime}(t)\right] . \tag{31}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
V^{\prime}(3)=\frac{\pi}{3}\left[2 \cdot 100 \cdot 50 \cdot(-5.0)+(100)^{2} \cdot(-2.0)\right]=-\frac{70000 \pi}{3} \mathrm{~cm}^{3} / \text { day } \tag{32}
\end{equation*}
$$

5. (a) See Figure 1

Figure 1: The Drawing for Problem 5
(b) At $x=1, y=2$, we compute from the differential equation that $y^{\prime}=\frac{3}{2}$. Hence, the tangent line to the solution through $(1,2)$ has equation

$$
\begin{equation*}
y=2+\frac{3}{2}(x-1) . \tag{33}
\end{equation*}
$$

From this, we approximate $y(0.8)$ on the solution curve as

$$
\begin{equation*}
y(0.8) \sim 2+\frac{3}{2}(0.8-1)=2+\frac{3}{2}(-0.2)=1.7 \tag{34}
\end{equation*}
$$

(c) If $y^{\prime \prime}>0$ on $[-1,1]$, the solution curve $y=f(x)$ must be concave upward in that region, meaning that the line tangent to the curve at $x=1$ lies below the curve there. We conclude that the approximation we have found in the previous part of this problem underestimates $f(0.8)$.
(d) If $y=f(x)$ is the solution to the differential equation $y^{\prime}=\frac{1}{2} \sin \left(\frac{\pi}{2} x\right) \sqrt{y+7}$
that satisfies $f(1)=2$, then

$$
\begin{align*}
\frac{d y}{d x} & =\sin \left(\frac{\pi}{2} x\right) \sqrt{f(x)+7} \tag{35}\\
\frac{d y}{\sqrt{y+7}} & =\sin \left(\frac{\pi}{2} x\right) d x \tag{36}\\
\int \frac{d y}{\sqrt{y+7}} d y & =\int \sin \left(\frac{\pi}{2} x\right) d x \tag{37}\\
\int u^{-1 / 2} d u & =\int \sin \left(\frac{\pi}{2} t\right) d t \tag{38}\\
2 u^{1 / 2} & =c-\frac{2}{\pi} \cos \left(\frac{\pi}{2} x\right) \tag{39}\\
y & =\left[c-\frac{1}{\pi} \cos \left(\frac{\pi}{2} x\right)\right]^{2}-7 \tag{40}
\end{align*}
$$

But $y=2$ when $x=1$, so

$$
\begin{equation*}
2=\left[c-\frac{1}{\pi} \cos \left(\frac{\pi}{2}\right)\right]^{2}-7 \tag{41}
\end{equation*}
$$

whence we may take $c=3$. Our solution is therefore

$$
\begin{equation*}
f(x)=\left[3-\frac{1}{\pi} \cos \left(\frac{\pi x}{2}\right)\right]^{2}-7 \tag{42}
\end{equation*}
$$

6. (a) If $x_{P}(t)=6-4 e^{-t}$, then the velocity $v_{P}(t)$ at time t is given by

$$
\begin{equation*}
v_{P}(t)=x_{P}^{\prime}(t)=4 e^{-t} \tag{43}
\end{equation*}
$$

(b) Velocity at time t of particle Q is given by $v_{Q}(t)=\frac{1}{t^{2}}=t^{-2}$. The acceleration $a_{Q}(t)$ at time t is therefore given by

$$
\begin{equation*}
a_{Q}(t)=v_{Q}^{\prime}(t)=-2 t^{-3}=-\frac{2}{t^{3}} \tag{44}
\end{equation*}
$$

The speed $s_{Q}(t)$ of particle Q at time t, which is never negative satisfies

$$
\begin{align*}
{\left[s_{Q}(t)\right]^{2} } & =v_{Q}(t) \cdot v_{Q}(t), \text { so } \tag{45}\\
2 s_{Q}(t) s_{Q}^{\prime}(t) & =2 v_{Q}(t) \cdot v_{Q}^{\prime}(t), \text { or } \tag{46}\\
s_{Q}^{\prime}(t) & =\frac{v_{Q}(t) \cdot a_{Q}(t)}{s_{Q}(t)}, \text { as long as } s_{Q}(t) \neq 0 \tag{47}
\end{align*}
$$

Thus, $s_{Q}^{\prime}(t)<0$ when $v_{Q}(t) \cdot a_{Q}(t)<-0$, or when $\left(t^{-2}\right) \cdot\left(-2 t^{-3}\right)=-2 t^{-5}<0$. It follows that the speed of particle Q is decreasing on the interval $(0, \infty)$.
(c) The position, $y_{Q}(t)$, of particle Q at time t, is given by

$$
\begin{align*}
y_{Q}(t) & =y_{Q}(1)+\int_{1}^{t} v_{Q}(\tau) d \tau \tag{48}\\
& =2+\int_{1}^{t} \tau^{-2} d \tau \tag{49}\\
& =2-\left.\tau^{-1}\right|_{1} ^{t} \tag{50}\\
& =2-\left[\frac{1}{t}-\frac{1}{1}\right]=3-\frac{1}{t} \tag{51}
\end{align*}
$$

(d) As $t \rightarrow \infty$, we see that $x_{P}(t)$ approaches its limiting value 6 from below, while $y_{Q}(t)$ approaches its limiting value 3 from below. Thus, the distance from particle P to the origin never exceeds 3, while the distance from particle Q to the origin gets arbitrarily close to 6 . Particle Q will eventually be farther from the origin that particle P.

