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1. We are given, effectively, A(t) = 450
√

sin(0.62t), where 0 ≤ t ≤ 10, as the rate—in
vehicles per hour—at which vehicles arrive at a toll plaza, with t representing the
time elapsed since 5 A.M.

(a) The total number of vehicles that arrive at the toll plaza between t = 1 and

t = 5 is

∫ 5

1
A(t) dt. Evaluation is not required, but numerical integration gives

∫ 5

1
A(t) dt = 450

∫ 5

1

√
sin(0.62t) dt ∼ 1502.148 vehicles. (1)

(b) The average value of the rate at which vehicles arrive at the toll plaza from
t = 1 to t = 5 is (to three decimal places)

1

5− 1

∫ 5

1
A(t) dt ∼ 375.537 vehicles per hour, (2)

where we have replaced the integral with the value we obtained numerically in
the previous part of this problem.

(c) We find that

A′(t) =
139.5 cos(0.62t)√

sin(0.62t)
, (3)

whence A′(1) ∼ 148.947 > 0. The derivative of the function A is positive when
t = 1, so A, the rate at which vehicles arrive at the toll plaza at 6 A.M, is
increasing at that time.
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(d) We are given that

N(t) =

∫ t

a
[A(x)− 400] dx, (4)

where a is the time when A is 400. By the Fundamental Theorem of Calculus,
this means that N ′(t) = A(t)− 400.

Solving numerically, we find that A(t) = 400 when t ∼ 1.469, so a ∼ 1.469.
Solving numerically, we find that N ′t) = 0 when t = a (Duh!) and when
t ∼ 3.598.. Consequently, the maximum value of N on the interval [a, 4] occurs
at t = a, when t ∼ 3.598, or when t = 4. We find that

N [a] = 0, (5)

N [3.598] ∼ 71.254, (6)

N [4] ∼ 62.338. (7)

From this we conclude that, to the nearest whole vehicle, the length of the line
reaches a maximum about 71 vehicles at about 8:36 A.M.

2. (a) Solving numerically, we find that B, the value near x = 1 where the two curves
cross, is about 0.78198. So the area of the region enclosed by the two graphs is,
to three decimal places,∫ B

−2

[
ln(x+ 3)− (x4 + 2x3)

)
dx = (x+ 3) ln(x+ 3)− x− 1

2
x4 − 1

5
x5
∣∣∣∣B
−2

(8)

∼ 3.604. (9)

(b) The vertical distance, h, between the curves is given by h(x) = f(x)− g(x) on
the interval [−2, B]. On this interval, we have

h′(x) = f ′(x)− g′(x) (10)

=
1

x+ 3
− 4x3 − 6x2, whence (11)

h′(−0.5) = −0.6 < 0. (12)

This derivative is continuous, and h′(x) is therefore negative in some interval
centered at x = −0.5. When its derivative is negative on an interval, the function
is decreasing on that interval, so h is decreasing near x = −0.5.

Note: Very few elementary calculus textbooks define the terms increasing or
decreasing except in reference to intervals, leaving the phrase “decreasing at a
point” meaningless. The function u, given by

u(x) =

x2 sin
1

x
− 2x, x 6= 0;

0, x = 0;
(13)
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is one of a function u for which u′(0) is negative, even though u is decreasing
on no open interval centered at x = 0.

(c) The area of a cross section whose horizontal coordinate is x = t, is A(t) = [h(t)]2,
the function h being as above. Hence the volume of the solid in question is

V =

∫ B

−2
A(t) dt (14)

=

∫ B

−2

[
ln(x+ 3)− (x4 + 2x3)]2 dx. (15)

One can carry out this antidifferentiation by elementary means, but the compu-
tation is too horrible to contemplate under examination conditions. We calculate
numerically to find that V ∼ 5.340, to three decimal places.

(d) The area of the cross-section at t = x is A(x), where A is as defined in the
previous part of this problem. If the x-coordinate of the cross-section moves

rightward with velocity
dx

dt
, then

d

dt
A(x) =

d

dt
[f(x)− g(x)]2 (16)

= 2
[
ln(x+ 3)− (x4 + 2x3)

] [ 1

x+ 3
− (4x3 + 6x2)

]
dx

dt
. (17)

Putting x = −0.5 and
dx

dt
= 7 gives

d

dt
A(x) ∼ −9.272. At the time specified,

the rate of change of the area of the cross-section with respect to time is, to
three decimal places, −9.272 square units per second.

3. (a) By the Fundamental Theorem of Calculus and what is given,

f(x) = f(4) +

∫ x

4
f ′(t) dt (18)

= 3 +

∫ x

4
f ′(t) dt, (19)

In fact, f ′ is given by

f ′(t) =


−
√

4t− t2, 0 ≤ t < 4;

t− 4, 4 ≤ t < 6;

8− t, 6 ≤ t ≤ 1.

(20)

However, we will make no use of this fact.
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Because the portion of the f ′ curve from t = 0 to t = 4 is a semi-circle of
radius 2 lying below the horizontal axis whose diameter is the horizontal axis,∫ 4

0
f ′(t) dt = −2π. The portion of the curve over the interval [4, 5] is a straight

line that forms, with the horizontal axis, a triangle of base 1 and altitude 1, so∫ 5

4
f ′(t) dt =

1

2
. From these facts, we find that

f(0) = 3 +

∫ 0

4
f ′(t) dt = 3−

∫ 4

0
f ′(t) dt = 3 + 2π; (21)

f(5) = 3 +

∫ 5

4
f ′(t) dt = 3 +

1

2
=

7

2
. (22)

(b) A function has an inflection point where its derivative has a local maximum or
a local minimum—that is, where its derivative changes from being increasing to
being decreasing or vice versa. We see from the given graph that f ′(x) has a local
minimum at x = 2 and that f ′(t) has a local maximum at x = 6. Consequently,
f has inflection points at x = 2 and and x = 6.

Note: Some elementary textbooks require that the second derivative be defined
at an inflection point. If we adopt this definition, f has just one inflection point,
at x = 2.

(c) The function g defined by g(x) = f(x) − x is decreasing on the closures of
those intervals where g′(x) < 0—that is, where f ′(x) − 1 < 0, which is to say
f ′(x) < 1. We see from the given graph that these inequalities hold for those,
and only those, values of x which are less than 5. Hence f is decreasing on the
interval [0, 5].

(d) The absolute minimum value of g on the interval [0, 7] exists because, as the in-
tegral of a continuous derivative, g is itself a continuous, differentiable, function
on that interval. We know that the absolute minimum of such a function must
occur either at an endpoint of the interval or at a point where the derivative is
zero. So we must evaluate g at x = 0, at x = 7, and at x = 5, the latter point
being the point only point in the interval where g′(x) = f ′(x) − 1 = 0. From
the first part of this problem, we have

g(0) = f(0)− 0 = 3 + 2π; (23)

g(5) = f(5)− 5 =
7

2
− 5 = −3

2
. (24)

It is easy to see from the geometry of the curve that

∫ 6

4
f ′(t) dt = 2 and that
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∫ 7

6
f ′(t) dt =

3

2
. Therefore,

g(7) = f(7)− 7 =

[
3 +

∫ 7

4
f ′(t) dt

]
− 7 (25)

=

[∫ 6

4
f ′(t) dt+

∫ 7

6
f ′(t) dt

]
− 4 (26)

= 2 +
3

2
− 4 = −1

2
. (27)

We conclude that the absolute minimum value of g on [0, 7] is g(5) = −3

2
.

4. (a) We can approximate r′′(8.5), in centimeters/day2, by

r′′(8.5) ∼ r(10)− r(7)

10− 7
=

(−3.8)− (−4.4)

3
= 0.2 cm/day2. (28)

(b) We expect derivative of the radius of the base of a melting cone of ice to be
continuous as a function of time. Under the assumption that this is so, there
must be a t0 between t = 0 and t = 3 where r(t0) = −6, because r(3) = −5.0,
and r(0) = −6.1—so the Intermediate Value Theorem for Continuous Functions
guarantees the existence of such a t0. Note: In fact, continuity of r′ is not
needed; derivatives always have the intermediate value property—but this is
rarely shown, or even stated as a fact, in elementary calculus courses. The fact
is known as “Darboux’s Theorem,” and it is a standard part of a good advanced
calculus course.

(c) Using the values from the given table in a right Riemann sum, we have∫ 12

0
r′(t) dt ∼ r′(3)(3− 0) + r′(7)(7− 3) + r′(10)(10− 7) + r′(10)(12− 10)

(29)

∼ (−5.0) · 3 + (−4.4) · 4 + (−3.8) · 3 + (−3.5) · 2 = −51.0 (30)

(d) Let h(t) denote the height of the cone at time t; in addition to the information
in the table, we are given r(3) = 100 and h(3) = 50. We know that the volume

of the cone at time t is given by V (t) =
π

3
[r(t)]2h(t), and from this we see that

V ′(t) =
π

3

[
2r(t)h(t)r′(t) + [r(t)]2h′(t)

]
. (31)

Thus,

V ′(3) =
π

3

[
2 · 100 · 50 · (−5.0) + (100)2 · (−2.0)

]
= −70000π

3
cm3/day (32)
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5. (a) See Figure 1
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Figure 1: The Drawing for Problem 5

(b) At x = 1, y = 2, we compute from the differential equation that y′ =
3

2
. Hence,

the tangent line to the solution through (1, 2) has equation

y = 2 +
3

2
(x− 1). (33)

From this, we approximate y(0.8) on the solution curve as

y(0.8) ∼ 2 +
3

2
(0.8− 1) = 2 +

3

2
(−0.2) = 1.7. (34)

(c) If y′′ > 0 on [−1, 1], the solution curve y = f(x) must be concave upward in
that region, meaning that the line tangent to the curve at x = 1 lies below the
curve there. We conclude that the approximation we have found in the previous
part of this problem underestimates f(0.8).

(d) If y = f(x) is the solution to the differential equation y′ =
1

2
sin
(π

2
x
)√

y + 7
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that satisfies f(1) = 2, then

dy

dx
= sin

(π
2
x
)√

f(x) + 7; (35)

dy√
y + 7

= sin
(π

2
x
)
dx; (36)∫

dy√
y + 7

dy =

∫
sin
(π

2
x
)
dx; (37)∫

u−1/2 du =

∫
sin
(π

2
t
)
dt; (38)

2u1/2 = c− 2

π
cos
(π

2
x
)

; (39)

y =

[
c− 1

π
cos
(π

2
x
)]2
− 7. (40)

But y = 2 when x = 1, so

2 =

[
c− 1

π
cos
(π

2

)]2
− 7, (41)

whence we may take c = 3. Our solution is therefore

f(x) =

[
3− 1

π
cos
(πx

2

)]2
− 7. (42)

6. (a) If xP (t) = 6− 4e−t, then the velocity vP (t) at time t is given by

vP (t) = x′P (t) = 4e−t. (43)

(b) Velocity at time t of particle Q is given by vQ(t) =
1

t2
= t−2. The acceleration

aQ(t) at time t is therefore given by

aQ(t) = v′Q(t) = −2t−3 = − 2

t3
. (44)

The speed sQ(t) of particle Q at time t, which is never negative satisfies

[sQ(t)]2 = vQ(t) · vQ(t), so (45)

2sQ(t)s′Q(t) = 2vQ(t) · v′Q(t), or (46)

s′Q(t) =
vQ(t) · aQ(t)

sQ(t)
, as long as sQ(t) 6= 0. (47)

Thus, s′Q(t) < 0 when vQ(t) · aQ(t) < −0, or when (t−2) · (−2t−3) = −2t−5 < 0.
It follows that the speed of particle Q is decreasing on the interval (0,∞).
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(c) The position, yQ(t), of particle Q at time t, is given by

yQ(t) = yQ(1) +

∫ t

1
vQ(τ) dτ (48)

= 2 +

∫ t

1
τ−2 dτ (49)

= 2− τ−1
∣∣∣∣t
1

(50)

= 2−
[

1

t
− 1

1

]
= 3− 1

t
. (51)

(d) As t→∞, we see that xP (t) approaches its limiting value 6 from below, while
yQ(t) approaches its limiting value 3 from below. Thus, the distance from par-
ticle P to the origin never exceeds 3, while the distance from particle Q to the
origin gets arbitrarily close to 6. Particle Q will eventually be farther from the
origin that particle P .
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