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1. (a) The integral

∫ 135

60
f(t) dt gives, in gallons, the amount of gas pumped into the

gas tank during the time interval 60 ≤ t ≤ 135. This amount is given by∫ 135

60
f(t) dt ∼ f(90) · 30 + f(120) · 30 + f(135) · 15 (1)

= 0.15 · 30 + 0.10 · 30 + 0.05 · 15 = 8.25 gallons (2)

where we have used “∼” to mean “is approximately equal to.”

(b) The function f is given differentiable, presumably on at least the interior of its
domain, and therefore certainly on the interval (60, 120) because (60, 120) ⊆
(0, 150). It also follows from the differentiability of f on (0, 150) that f is
continuous (and differentiable) on [60, 120]. We may therefore apply the Mean
Value Theorem to f on [60, 120] to conclude that there is a number, c, in the
interval (60, 120) such that

f ′(c)(120− 60) = f(120)− f(60) = 0. (3)

We conclude that there must be a number with the required properties.

(c) If the rate of flow of gasoline be modeled by

g(t) =
t

500
cos

[(
t

120

)2
]
,

for 0 ≤ t ≤ 150, then ḡ, the average rate of flow for that time interval is given
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by

ḡ =
1

150− 0

∫ 150

0
g(t) dt (4)

=
1

150 · 500

∫ 150

0
t cos

(
t

120

)2

dt (5)

=
120 · 120

2 · 150 · 500

∫ 150

0

2

120
· t

120
· cos

(
t

120

)2

dt (6)

=
12

125
sin

(
t

120

)2 ∣∣∣∣150
0

(7)

=
12

125
sin

25

16
∼ 0.095997. (8)

(d) With g as given, we have

g′(t) =
1

500
· cos

(
t

120

)2

− t

500
· 2t

120
· 1

120
· sin

(
t

120

)2

(9)

=
1

500
· cos

(
t

120

)2

− t2

3600000
sin

(
t

120

)2

(10)

Thus,

g′(140) =
1

500
cos

49

36
− 49

9000
sin

49

36
. (11)

2. (a) Stephen’s velocity for 0 ≤ t ≤ 90, we are told, is given, in m/sec, by

v(t) = 2.38e−0.02t sin
( π

56
t
)
, (12)

so Stephen changes directions at just those times t between t = 0 and t = 90

where v(t) changes sign. All factors of v(t) are positive except for sin
( π

56
t
)

, so

the sign of this latter factor determines the sign of v. But sinu changes sign

only at u = π if 0 ≤ u ≤ 90π

56
< 2π. Thus, t = 56 seconds gives the only time

at which Stephen changes direction of travel.

(b) Stephen’s acceleration at time
(
t, a(t)

)
, is given by

a(t) = v′(t) (13)

=
d

dt

[
2.38e−0.02t sin

π

56
t
]

(14)

= e−0.02t
(

0.133518 cos
π

56
t− 0.0476 sin

π

56
t
)
. (15)
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Thus, Stephen’s acceleration at time t = 60 is

a(60) ∼ −0.0360162 m/sec2. (16)

The acceleration is negative. But

v(60) ∼ −0.259512 (17)

is also negative, and speed s(t), which is never negative, satisfies s(t)2 = v(t)2,
which means that

d

dt

[
s(t)2

]
= 2s(t)s′(t) = 2v(t)v′(t), (18)

so the sign of s′(t) is the same as that of the product v(t)v′(t). We have seen
that v(60) and v′(60) are both negative, and we conclude that s′(60) must be
positive—which, in turn, means that speed is increasing when t = 60.

(c) The distance S between Stephen’s position at time t = 20 secconds and time
t = 80 seconds is given, in meters, by

S =

∣∣∣∣∫ 80

20
v(t) dt

∣∣∣∣ (19)

=

∣∣∣∣2.38

∫ 80

20
e−0.02t sin

π

56
t dt

∣∣∣∣ (20)

∼ 23.383997 meters. (21)

(d) The distance D that Stephen travels during the time interval 0 ≤ t ≤ 90 is given
by

d =

∫ 90

0
|v(t)| dt (22)

= 2.38

∫ 90

0

∣∣∣e−0.02t sin
π

56
t
∣∣∣ dt (23)

= 2.38

∫ 56

0
e−0.02t sin

π

56
t dt− 2.38

∫ 90

56
e−0.02t sin

π

56
t dt (24)

∼ 62.1642 meters. (25)
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3. (a) See Figure 3a.

Figure 1: Problem 3a

(b) The line tangent, at (0, 5), to the graph of Problem 3a is

M = 5 +
1

4
(40− 5)t = 5 +

35

4
t (26)

This gives the approximate value M = 5 +
35

2
=

45

2
C◦ for the temperature of

the milk at t = 2.

(c) Because

dM

dt
=

1

4
(40−M), (27)

we have

d2M

dt2
=

d

dt

[
1

4
(40−M)

]
(28)

= −1

4

dM

dt
(29)

= − 1

16
(40−M). (30)

When 0 ≤ M < 40, it is clear that M ′′ < 0; in particular, M ′′ < 0 when t = 0
and M = 5. By continuity, M is near 5 when t is near 2, so we can expect M ′′
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to be negative for values of t near zero. This means that the graph of M as a
function of t is concave downward near the point (0, 5) so that its tangent lines
lie above the curve in that region. Consequently, the approximation of Problem
3b is an underestimate for the actual value of M(2).

(d) We are given the initial value problem

dM

dt
=

1

4
(40−M); (31)

M(0) = 5. (32)

Let us suppose that the function ϕ gives a solution to this problem, so that

ϕ′(t) =
1

4
[40− ϕ(t)], (33)

and

ϕ(0) = 5. (34)

Then we may write

4ϕ′(t)

40− ϕ(t)
= 1. (35)

From this, it follows that

4

∫ t

0

ϕ′(τ)

40− ϕ(τ)
dτ =

∫ t

0
dτ, (36)

In order to carry out the integration on the left side of (36), we make the
substituion M = M(t) = ϕ(t); dM = ϕ′(t) dt. We carry out the integration onf
the right, and (36) becomes ∫ ϕ(t)

ϕ(0)

dM

40−M
=
t

4
. (37)

As long as t > 0 is not too big, we know, by the continuity of ϕ and the fact
that ϕ(0) = 5, that ϕ(t) < 40. Thus, for positive values t that are not too large,
we have

− ln[40− ϕ(t)] + ln 35 =
t

4
, (38)

which, upon back-substituting and eliminating the logarithm, becomes

35

40−M
= et/4. (39)
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Equation (39) is equivalent to

35e−t/4 = 40−M, or (40)

M(t) = 40− 35e−t/4. (41)

This is the solution we sought.

4. (a) The function f , as given, does not have a relative minimum at x = 6. This
is so because f ′(x) > 0 on (5, 6) and on (6, 7)—making f a strictly increasing
function on the interval [5, 7].

(b) A function f is concave downward on any open interval where f ′ is a decreasing
function. The function for which the graph of f ′ is given can be seen to be
a decreasing function on the interval (−2, 0) and on the interval (4, 6). Conse-
quently, the function f is concave downward on the interval (−2, 0), and concave
downward on the interval (4, 6).

(c) By the Fundamental Theorem of Calculus, we can write

f(x) = f(2) +

∫ x

2
f ′(t) dt. (42)

On the interval [0, 4], we see from the graph of f ′ that f ′(x) = x − 2. Thus,
when 0 ≤ x ≤ 4, we have (because f(2) = 1 is given)

f(x) = 1 +

∫ x

2
(t− 2) dt (43)

= 1 +

[(
t2

2
− 2t

) ∣∣∣∣x
2

]
(44)

=
1

2
x2 − 2x+ 3. (45)

Thus,

lim
x→2

6f(x)− 3x

x2 − 5x+ 6
= lim

x→2

3x2 − 15x+ 18

x2 − 5x+ 6
(46)

= lim
x→2

3(((((((
(x2 − 5x+ 6)

((((((
x2 − 5x+ 6

= lim
x→2

3 = 3. (47)

Alternate Solution: It is also possible to use the fact (given) that f(2) = 1, and
the fact (which we can read from the graph) that f ′(x) = 0 = lim

x→2
f ′(x) for all x

near x = 2, to employ l’Hôpital’s Rule to solve this problem.

Because f ′ is given, we know that f is differentiable, and therefore continuous on
the interval [−2, 8]; moreover, it is clear from the graph of f ′ that f ′ is continuous
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on that interval, and at x = 2, whence lim
x→2

f ′(x) = 0. So both the numerator and

the denominator of
6f(x)− 3x

x2 − 5x+ 6
are continuous and continuously differentiable at

x = 2. We also have

lim
x→2

[6f(x)− 3x] = 6 · 1− 3 · 2 = 0, (48)

and

lim
x→2

[
x2 − 5x+ 6

]
= 22 − 5 · 2 + 6 = 0. (49)

It is therefore legitimate to see if l’Hôpital’s rule can be used to evaluate the limit
we seek:

We have,

lim
x→2

6f(x)− 3x

x2 − 5x+ 6
= lim

x→2

6f ′(x)− 3

2x− 5
=

6 · 0− 3

2 · 2− 5
= 3. (50)

The limit exists, so l’Hôpital’s rule justifies the first of the equalities in (50).

(d) If a differentiable function, g, has an absolute minimum at x = a in an interval
[α, β], the value of its derivative, g′(a) must vanish or a must be either α or β.
We see from the given graph that the derivative f ′ vanishes only at x = −1,
x = 2 and x = 6. We have already [see Problem (4a)] ruled out x = 6 as a
possibility for the function f of this problem: we saw there that f doesn’t have
even a relative minimum there—and we know that an absolute minimum must
be a relative minimum.

There can’t be a relative minimum (or, consequently, an absolute minimum)
for f at x = −1 because f ′(x) > 0 when −2 < x < −1—meaning that f is
increasing immediately to the left of x = 1).

We also know that f must have an absolute minimum in the interval [−2, 8],
because f is differentiable, and therefore continuous, throughout that interval, so
that the Extreme Value Theorem guarantees an absolute minimum somewhere
therein. We have ruled out x = 6 and x = −1. So the absolute minimum lies at
one of the points {−2, 2, 8}.
We know [see Problem (4c)] that

f(x) = f(2) +

∫ x

2
f ′(t) dt. (51)

We see (by considering what has been given and using the areas between the f ′

curve and the x-axis) to evaluate the integral, that

f(−2) = 1 + (2 + 1− 1) = 2; (52)

f(2) = 1; (53)

f(8) = 1 + [2 + (8− 2π)] = 11− 2π ∼ 4.72. (54)
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We see that f assumes its absolute minimum value on [−2, 8] at x = 2, where
f(2) = 1.

5. (a) If h(x) = f [g(x)], then. by the Chain Rule, h′(7) = f ′[g(7)] · g′(7). From the
given table, we see that g′(7) = 8, g(7) = 0, f ′(0) = 3/2. Thus,

h′(7) = f ′[g(7)] · g′(7) (55)

= f ′[0] · 8 (56)

=
3

2
· 8 = 12. (57)

(b) If the derivative of the function k is given by k′(x) = [f(x)]2 · g(x), then, by the
Power Rule, the Product Rule and the Chain Rule,

k′′(x) = 2f(x)g(x)f ′(x) + [f(x)]2g′(x). (58)

Reading again from the table as necessary, we have

k′′(4) = f(4)g(4)f ′(4) + [f(4)]2g′(4) (59)

= 4 · (−3) · 3 + 42 · 2 (60)

= −36 + 32 = −4. (61)

We find that k′′(4) = −4 < 0, so graph of the function k is concave downward
at x = 4.

(c) We are given

m(x) = 5x3 +

∫ x

0
f ′(t) dt. (62)

This means, by the Fundamental Theorem of Calculus, that

m(x) = 5x3 + [f(x)− f(0)] , (63)

so that

m(2) = 5 · 23 + f(2)− f(0) = 40 + 7− 10 = 37. (64)

Also by the Fundamental Theorem of Calculus,

m′(x) = 15x2 +
d

dx

∫ x

0
f ′(t) dt (65)

= 15x2 + f ′(x). (66)

Thus,

m′(2) = 15 · 22 + f ′(2) = 60 + (−8) = 52. (67)
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(d) The notions “increasing (decreasing) at the point” are problematic, because
very few textbooks or instructors define the notions. And we must take care
in making such a definition, because it is possible for a derivative to be (say)
positive at a point while its primitive is not increasing in any open interval
centered at that point.

The function m, as given, is twice differentiable, which means that m′ must be
continuous. Thus, because m′(2) = 52 > 0, m′(x) must be positive for all values
of x that lie in some open interval centered at x = 2, guaranteeing that m is an
increasing function on that interval and “at the point” (2, 37).

6. (a) If 6xy = 2 + y3, then, differentiating implicitly yields

6y + 6xy′ = 3y2y′, or (68)

2y = (y2 − 2x)y′ (69)

y′ =
2y

y2 − 2x
, (70)

as required.

(b) Horizontal tangent lines are to be found at points (x, y) where y′ = 0, or, in this
case, where

2y

y2 − 2x
= 0. (71)

At such a point, we would have to have y = 0, but if y = 0, the equation
6xy = 2 + y3 becomes the equaion 0 = 2, which has no solutions in x. (Or in
anything else.) Thus, no horizontal lines are tangent to this curve.

(c) If 6xy = 2 + y3, then

x =
2 + y3

6y
, so that (72)

dx

dy
=

3y2 · 6y − 6(2 + y3)

36y2
(73)

=
18y3 − 12− 6y3

36y2
(74)

=
y3 − 1

3y2
(75)

Thus,
dx

dy
= 0, giving a vertical tangent line, precisely when y = 1, and

x =
2 + 13

6 · 1
=

1

2
. (76)
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The only vertical tangent line is the vertical line through the point
(
1
2 , 1
)
.

(d) If 6xy = 2 + y3, and x, y both depend differentiably on a third variable t, then
implicit differentiation with respect to t gives

6

(
dx

dt
· y + x · dy

dt

)
= 3y2

dy

dt
. (77)

When x =
1

2
, y = −2 and

dx

dt
=

2

3
, this yields

6

[
2

3
· (−2) +

1

2

dy

dt

]
= 3 · (−2)2

dy

dt
, or (78)

−8 + 3
dy

dt
= 12

dy

dt
. (79)

It follows that, under the given conditions,
dy

dt
= −8

9
.
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