Solutions to
 2023 AP Calculus AB Free Response Questions

Louis A. Talman, Ph. D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

May 16, 2023

1. (a) The integral $\int_{60}^{135} f(t) d t$ gives, in gallons, the amount of gas pumped into the gas tank during the time interval $60 \leq t \leq 135$. This amount is given by

$$
\begin{align*}
\int_{60}^{135} f(t) d t & \sim f(90) \cdot 30+f(120) \cdot 30+f(135) \cdot 15 \tag{1}\\
& =0.15 \cdot 30+0.10 \cdot 30+0.05 \cdot 15=8.25 \text { gallons } \tag{2}
\end{align*}
$$

where we have used " \sim " to mean "is approximately equal to."
(b) The function f is given differentiable, presumably on at least the interior of its domain, and therefore certainly on the interval $(60,120)$ because $(60,120) \subseteq$ $(0,150)$. It also follows from the differentiability of f on $(0,150)$ that f is continuous (and differentiable) on $[60,120]$. We may therefore apply the Mean Value Theorem to f on $[60,120]$ to conclude that there is a number, c, in the interval $(60,120)$ such that

$$
\begin{equation*}
f^{\prime}(c)(120-60)=f(120)-f(60)=0 . \tag{3}
\end{equation*}
$$

We conclude that there must be a number with the required properties.
(c) If the rate of flow of gasoline be modeled by

$$
g(t)=\frac{t}{500} \cos \left[\left(\frac{t}{120}\right)^{2}\right]
$$

for $0 \leq t \leq 150$, then \bar{g}, the average rate of flow for that time interval is given
by

$$
\begin{align*}
\bar{g} & =\frac{1}{150-0} \int_{0}^{150} g(t) d t \tag{4}\\
& =\frac{1}{150 \cdot 500} \int_{0}^{150} t \cos \left(\frac{t}{120}\right)^{2} d t \tag{5}\\
& =\frac{120 \cdot 120}{2 \cdot 150 \cdot 500} \int_{0}^{150} \frac{2}{120} \cdot \frac{t}{120} \cdot \cos \left(\frac{t}{120}\right)^{2} d t \tag{6}\\
& =\left.\frac{12}{125} \sin \left(\frac{t}{120}\right)^{2}\right|_{0} ^{150} \tag{7}\\
& =\frac{12}{125} \sin \frac{25}{16} \sim 0.095997 . \tag{8}
\end{align*}
$$

(d) With g as given, we have

$$
\begin{align*}
g^{\prime}(t) & =\frac{1}{500} \cdot \cos \left(\frac{t}{120}\right)^{2}-\frac{t}{500} \cdot \frac{2 t}{120} \cdot \frac{1}{120} \cdot \sin \left(\frac{t}{120}\right)^{2} \tag{9}\\
& =\frac{1}{500} \cdot \cos \left(\frac{t}{120}\right)^{2}-\frac{t^{2}}{3600000} \sin \left(\frac{t}{120}\right)^{2} \tag{10}
\end{align*}
$$

Thus,

$$
\begin{equation*}
g^{\prime}(140)=\frac{1}{500} \cos \frac{49}{36}-\frac{49}{9000} \sin \frac{49}{36} . \tag{11}
\end{equation*}
$$

2. (a) Stephen's velocity for $0 \leq t \leq 90$, we are told, is given, in $\mathrm{m} / \mathrm{sec}$, by

$$
\begin{equation*}
v(t)=2.38 e^{-0.02 t} \sin \left(\frac{\pi}{56} t\right) \tag{12}
\end{equation*}
$$

so Stephen changes directions at just those times t between $t=0$ and $t=90$ where $v(t)$ changes sign. All factors of $v(t)$ are positive except for $\sin \left(\frac{\pi}{56} t\right)$, so the sign of this latter factor determines the sign of v. But $\sin u$ changes sign only at $u=\pi$ if $0 \leq u \leq \frac{90 \pi}{56}<2 \pi$. Thus, $t=56$ seconds gives the only time at which Stephen changes direction of travel.
(b) Stephen's acceleration at time $(t, a(t))$, is given by

$$
\begin{align*}
a(t) & =v^{\prime}(t) \tag{13}\\
& =\frac{d}{d t}\left[2.38 e^{-0.02 t} \sin \frac{\pi}{56} t\right] \tag{14}\\
& =e^{-0.02 t}\left(0.133518 \cos \frac{\pi}{56} t-0.0476 \sin \frac{\pi}{56} t\right) . \tag{15}
\end{align*}
$$

Thus, Stephen's acceleration at time $t=60$ is

$$
\begin{equation*}
a(60) \sim-0.0360162 \mathrm{~m} / \mathrm{sec}^{2} \tag{16}
\end{equation*}
$$

The acceleration is negative. But

$$
\begin{equation*}
v(60) \sim-0.259512 \tag{17}
\end{equation*}
$$

is also negative, and speed $s(t)$, which is never negative, satisfies $s(t)^{2}=v(t)^{2}$, which means that

$$
\begin{equation*}
\frac{d}{d t}\left[s(t)^{2}\right]=2 s(t) s^{\prime}(t)=2 v(t) v^{\prime}(t) \tag{18}
\end{equation*}
$$

so the sign of $s^{\prime}(t)$ is the same as that of the product $v(t) v^{\prime}(t)$. We have seen that $v(60)$ and $v^{\prime}(60)$ are both negative, and we conclude that $s^{\prime}(60)$ must be positive - which, in turn, means that speed is increasing when $t=60$.
(c) The distance S between Stephen's position at time $t=20$ secconds and time $t=80$ seconds is given, in meters, by

$$
\begin{align*}
S & =\left|\int_{20}^{80} v(t) d t\right| \tag{19}\\
& =\left|2.38 \int_{20}^{80} e^{-0.02 t} \sin \frac{\pi}{56} t d t\right| \tag{20}\\
& \sim 23.383997 \text { meters. } \tag{21}
\end{align*}
$$

(d) The distance D that Stephen travels during the time interval $0 \leq t \leq 90$ is given by

$$
\begin{align*}
d & =\int_{0}^{90}|v(t)| d t \tag{22}\\
& =2.38 \int_{0}^{90}\left|e^{-0.02 t} \sin \frac{\pi}{56} t\right| d t \tag{23}\\
& =2.38 \int_{0}^{56} e^{-0.02 t} \sin \frac{\pi}{56} t d t-2.38 \int_{56}^{90} e^{-0.02 t} \sin \frac{\pi}{56} t d t \tag{24}\\
& \sim 62.1642 \text { meters. } \tag{25}
\end{align*}
$$

3. (a) See Figure 3a.

Figure 1: Problem 3a
(b) The line tangent, at $(0,5)$, to the graph of Problem 3a is

$$
\begin{equation*}
M=5+\frac{1}{4}(40-5) t=5+\frac{35}{4} t \tag{26}
\end{equation*}
$$

This gives the approximate value $M=5+\frac{35}{2}=\frac{45}{2} \mathrm{C}^{\circ}$ for the temperature of the milk at $t=2$.
(c) Because

$$
\begin{equation*}
\frac{d M}{d t}=\frac{1}{4}(40-M) \tag{27}
\end{equation*}
$$

we have

$$
\begin{align*}
\frac{d^{2} M}{d t^{2}} & =\frac{d}{d t}\left[\frac{1}{4}(40-M)\right] \tag{28}\\
& =-\frac{1}{4} \frac{d M}{d t} \tag{29}\\
& =-\frac{1}{16}(40-M) \tag{30}
\end{align*}
$$

When $0 \leq M<40$, it is clear that $M^{\prime \prime}<0$; in particular, $M^{\prime \prime}<0$ when $t=0$ and $M=5$. By continuity, M is near 5 when t is near 2 , so we can expect $M^{\prime \prime}$
to be negative for values of t near zero. This means that the graph of M as a function of t is concave downward near the point $(0,5)$ so that its tangent lines lie above the curve in that region. Consequently, the approximation of Problem 3 b is an underestimate for the actual value of $M(2)$.
(d) We are given the initial value problem

$$
\begin{align*}
\frac{d M}{d t} & =\frac{1}{4}(40-M) \tag{31}\\
M(0) & =5 \tag{32}
\end{align*}
$$

Let us suppose that the function φ gives a solution to this problem, so that

$$
\begin{equation*}
\varphi^{\prime}(t)=\frac{1}{4}[40-\varphi(t)], \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(0)=5 \tag{34}
\end{equation*}
$$

Then we may write

$$
\begin{equation*}
\frac{4 \varphi^{\prime}(t)}{40-\varphi(t)}=1 \tag{35}
\end{equation*}
$$

From this, it follows that

$$
\begin{equation*}
4 \int_{0}^{t} \frac{\varphi^{\prime}(\tau)}{40-\varphi(\tau)} d \tau=\int_{0}^{t} d \tau \tag{36}
\end{equation*}
$$

In order to carry out the integration on the left side of (36), we make the substituion $M=M(t)=\varphi(t) ; d M=\varphi^{\prime}(t) d t$. We carry out the integration onf the right, and (36) becomes

$$
\begin{equation*}
\int_{\varphi(0)}^{\varphi(t)} \frac{d M}{40-M}=\frac{t}{4} \tag{37}
\end{equation*}
$$

As long as $t>0$ is not too big, we know, by the continuity of φ and the fact that $\varphi(0)=5$, that $\varphi(t)<40$. Thus, for positive values t that are not too large, we have

$$
\begin{equation*}
-\ln [40-\varphi(t)]+\ln 35=\frac{t}{4} \tag{38}
\end{equation*}
$$

which, upon back-substituting and eliminating the logarithm, becomes

$$
\begin{equation*}
\frac{35}{40-M}=e^{t / 4} \tag{39}
\end{equation*}
$$

Equation (39) is equivalent to

$$
\begin{align*}
35 e^{-t / 4} & =40-M, \text { or } \tag{40}\\
M(t) & =40-35 e^{-t / 4} . \tag{41}
\end{align*}
$$

This is the solution we sought.
4. (a) The function f, as given, does not have a relative minimum at $x=6$. This is so because $f^{\prime}(x)>0$ on $(5,6)$ and on $(6,7)$-making f a strictly increasing function on the interval [5,7$]$.
(b) A function f is concave downward on any open interval where f^{\prime} is a decreasing function. The function for which the graph of f^{\prime} is given can be seen to be a decreasing function on the interval $(-2,0)$ and on the interval $(4,6)$. Consequently, the function f is concave downward on the interval $(-2,0)$, and concave downward on the interval $(4,6)$.
(c) By the Fundamental Theorem of Calculus, we can write

$$
\begin{equation*}
f(x)=f(2)+\int_{2}^{x} f^{\prime}(t) d t \tag{42}
\end{equation*}
$$

On the interval $[0,4]$, we see from the graph of f^{\prime} that $f^{\prime}(x)=x-2$. Thus, when $0 \leq x \leq 4$, we have (because $f(2)=1$ is given)

$$
\begin{align*}
f(x) & =1+\int_{2}^{x}(t-2) d t \tag{43}\\
& =1+\left[\left.\left(\frac{t^{2}}{2}-2 t\right)\right|_{2} ^{x}\right] \tag{44}\\
& =\frac{1}{2} x^{2}-2 x+3 . \tag{45}
\end{align*}
$$

Thus,

$$
\begin{align*}
\lim _{x \rightarrow 2} \frac{6 f(x)-3 x}{x^{2}-5 x+6} & =\lim _{x \rightarrow 2} \frac{3 x^{2}-15 x+18}{x^{2}-5 x+6} \tag{46}\\
& =\lim _{x \rightarrow 2} \frac{3\left(x^{2}-5 x+6\right)}{x^{2}-5 x+6}=\lim _{x \rightarrow 2} 3=3 . \tag{47}
\end{align*}
$$

Alternate Solution: It is also possible to use the fact (given) that $f(2)=1$, and the fact (which we can read from the graph) that $f^{\prime}(x)=0=\lim _{x \rightarrow 2} f^{\prime}(x)$ for all x near $x=2$, to employ l'Hôpital's Rule to solve this problem.
Because f^{\prime} is given, we know that f is differentiable, and therefore continuous on the interval $[-2,8]$; moreover, it is clear from the graph of f^{\prime} that f^{\prime} is continuous
on that interval, and at $x=2$, whence $\lim _{x \rightarrow 2} f^{\prime}(x)=0$. So both the numerator and the denominator of $\frac{6 f(x)-3 x}{x^{2}-5 x+6}$ are continuous and continuously differentiable at $x=2$. We also have

$$
\begin{equation*}
\lim _{x \rightarrow 2}[6 f(x)-3 x]=6 \cdot 1-3 \cdot 2=0 \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow 2}\left[x^{2}-5 x+6\right]=2^{2}-5 \cdot 2+6=0 \tag{49}
\end{equation*}
$$

It is therefore legitimate to see if I'Hôpital's rule can be used to evaluate the limit we seek:
We have,

$$
\begin{equation*}
\lim _{x \rightarrow 2} \frac{6 f(x)-3 x}{x^{2}-5 x+6}=\lim _{x \rightarrow 2} \frac{6 f^{\prime}(x)-3}{2 x-5}=\frac{6 \cdot 0-3}{2 \cdot 2-5}=3 \tag{50}
\end{equation*}
$$

The limit exists, so l'Hôpital's rule justifies the first of the equalities in (50).
(d) If a differentiable function, g, has an absolute minimum at $x=a$ in an interval $[\alpha, \beta]$, the value of its derivative, $g^{\prime}(a)$ must vanish or a must be either α or β. We see from the given graph that the derivative f^{\prime} vanishes only at $x=-1$, $x=2$ and $x=6$. We have already [see Problem (4a)] ruled out $x=6$ as a possibility for the function f of this problem: we saw there that f doesn't have even a relative minimum there - and we know that an absolute minimum must be a relative minimum.
There can't be a relative minimum (or, consequently, an absolute minimum) for f at $x=-1$ because $f^{\prime}(x)>0$ when $-2<x<-1$-meaning that f is increasing immediately to the left of $x=1$).
We also know that f must have an absolute minimum in the interval $[-2,8]$, because f is differentiable, and therefore continuous, throughout that interval, so that the Extreme Value Theorem guarantees an absolute minimum somewhere therein. We have ruled out $x=6$ and $x=-1$. So the absolute minimum lies at one of the points $\{-2,2,8\}$.
We know [see Problem (4c)] that

$$
\begin{equation*}
f(x)=f(2)+\int_{2}^{x} f^{\prime}(t) d t \tag{51}
\end{equation*}
$$

We see (by considering what has been given and using the areas between the f^{\prime} curve and the x-axis) to evaluate the integral, that

$$
\begin{align*}
f(-2) & =1+(2+1-1)=2 \tag{52}\\
f(2) & =1 \tag{53}\\
f(8) & =1+[2+(8-2 \pi)]=11-2 \pi \sim 4.72 \tag{54}
\end{align*}
$$

We see that f assumes its absolute minimum value on $[-2,8]$ at $x=2$, where $f(2)=1$.
5. (a) If $h(x)=f[g(x)]$, then. by the Chain Rule, $h^{\prime}(7)=f^{\prime}[g(7)] \cdot g^{\prime}(7)$. From the given table, we see that $g^{\prime}(7)=8, g(7)=0, f^{\prime}(0)=3 / 2$. Thus,

$$
\begin{align*}
h^{\prime}(7) & =f^{\prime}[g(7)] \cdot g^{\prime}(7) \tag{55}\\
& =f^{\prime}[0] \cdot 8 \tag{56}\\
& =\frac{3}{2} \cdot 8=12 . \tag{57}
\end{align*}
$$

(b) If the derivative of the function k is given by $k^{\prime}(x)=[f(x)]^{2} \cdot g(x)$, then, by the Power Rule, the Product Rule and the Chain Rule,

$$
\begin{equation*}
k^{\prime \prime}(x)=2 f(x) g(x) f^{\prime}(x)+[f(x)]^{2} g^{\prime}(x) . \tag{58}
\end{equation*}
$$

Reading again from the table as necessary, we have

$$
\begin{align*}
k^{\prime \prime}(4) & =f(4) g(4) f^{\prime}(4)+[f(4)]^{2} g^{\prime}(4) \tag{59}\\
& =4 \cdot(-3) \cdot 3+4^{2} \cdot 2 \tag{60}\\
& =-36+32=-4 . \tag{61}
\end{align*}
$$

We find that $k^{\prime \prime}(4)=-4<0$, so graph of the function k is concave downward at $x=4$.
(c) We are given

$$
\begin{equation*}
m(x)=5 x^{3}+\int_{0}^{x} f^{\prime}(t) d t \tag{62}
\end{equation*}
$$

This means, by the Fundamental Theorem of Calculus, that

$$
\begin{equation*}
m(x)=5 x^{3}+[f(x)-f(0)], \tag{63}
\end{equation*}
$$

so that

$$
\begin{equation*}
m(2)=5 \cdot 2^{3}+f(2)-f(0)=40+7-10=37 . \tag{64}
\end{equation*}
$$

Also by the Fundamental Theorem of Calculus,

$$
\begin{align*}
m^{\prime}(x) & =15 x^{2}+\frac{d}{d x} \int_{0}^{x} f^{\prime}(t) d t \tag{65}\\
& =15 x^{2}+f^{\prime}(x) \tag{66}
\end{align*}
$$

Thus,

$$
\begin{equation*}
m^{\prime}(2)=15 \cdot 2^{2}+f^{\prime}(2)=60+(-8)=52 \tag{67}
\end{equation*}
$$

(d) The notions "increasing (decreasing) at the point" are problematic, because very few textbooks or instructors define the notions. And we must take care in making such a definition, because it is possible for a derivative to be (say) positive at a point while its primitive is not increasing in any open interval centered at that point.
The function m, as given, is twice differentiable, which means that m^{\prime} must be continuous. Thus, because $m^{\prime}(2)=52>0, m^{\prime}(x)$ must be positive for all values of x that lie in some open interval centered at $x=2$, guaranteeing that m is an increasing function on that interval and "at the point" $(2,37)$.
6. (a) If $6 x y=2+y^{3}$, then, differentiating implicitly yields

$$
\begin{align*}
6 y+6 x y^{\prime} & =3 y^{2} y^{\prime}, \text { or } \tag{68}\\
2 y & =\left(y^{2}-2 x\right) y^{\prime} \tag{69}\\
y^{\prime} & =\frac{2 y}{y^{2}-2 x}, \tag{70}
\end{align*}
$$

as required.
(b) Horizontal tangent lines are to be found at points (x, y) where $y^{\prime}=0$, or, in this case, where

$$
\begin{equation*}
\frac{2 y}{y^{2}-2 x}=0 . \tag{71}
\end{equation*}
$$

At such a point, we would have to have $y=0$, but if $y=0$, the equation $6 x y=2+y^{3}$ becomes the equaion $0=2$, which has no solutions in x. (Or in anything else.) Thus, no horizontal lines are tangent to this curve.
(c) If $6 x y=2+y^{3}$, then

$$
\begin{align*}
x & =\frac{2+y^{3}}{6 y}, \text { so that } \tag{72}\\
\frac{d x}{d y} & =\frac{3 y^{2} \cdot 6 y-6\left(2+y^{3}\right)}{36 y^{2}} \tag{73}\\
& =\frac{18 y^{3}-12-6 y^{3}}{36 y^{2}} \tag{74}\\
& =\frac{y^{3}-1}{3 y^{2}} \tag{75}
\end{align*}
$$

Thus, $\frac{d x}{d y}=0$, giving a vertical tangent line, precisely when $y=1$, and

$$
\begin{equation*}
x=\frac{2+1^{3}}{6 \cdot 1}=\frac{1}{2} . \tag{76}
\end{equation*}
$$

The only vertical tangent line is the vertical line through the point $\left(\frac{1}{2}, 1\right)$.
(d) If $6 x y=2+y^{3}$, and x, y both depend differentiably on a third variable t, then implicit differentiation with respect to t gives

$$
\begin{equation*}
6\left(\frac{d x}{d t} \cdot y+x \cdot \frac{d y}{d t}\right)=3 y^{2} \frac{d y}{d t} . \tag{77}
\end{equation*}
$$

When $x=\frac{1}{2}, y=-2$ and $\frac{d x}{d t}=\frac{2}{3}$, this yields

$$
\begin{align*}
& 6\left[\frac{2}{3} \cdot(-2)+\frac{1}{2} \frac{d y}{d t}\right]=3 \cdot(-2)^{2} \frac{d y}{d t}, \text { or } \tag{78}\\
& -8+3 \frac{d y}{d t}=12 \frac{d y}{d t} . \tag{79}
\end{align*}
$$

It follows that, under the given conditions, $\frac{d y}{d t}=-\frac{8}{9}$.

