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1. (a) The integral

∫ 135

60
f(t) dt gives, in gallons, the amount of gas pumped into the

gas tank during the time interval 60 ≤ t ≤ 135. This amount is given by∫ 135

60
f(t) dt ∼ f(90) · 30 + f(120) · 30 + f(135) · 15 (1)

= 0.15 · 30 + 0.10 · 30 + 0.05 · 15 = 8.25 gallons (2)

where we have used “∼” to mean “is approximately equal to.”

(b) The function f is given differentiable, presumably on at least the interior of its
domain, and therefore certainly on the interval (60, 120) because (60, 120) ⊆
(0, 150). It also follows from the differentiability of f on (0, 150) that f is
continuous (and differentiable) on [60, 120]. We may therefore apply the Mean
Value Theorem to f on [60, 120] to conclude that there is a number, c, in the
interval (60, 120) such that

f ′(c)(120− 60) = f(120)− f(60) = 0. (3)

We conclude that there must be a number with the required properties.

(c) If the rate of flow of gasoline be modeled by

g(t) =
t

500
cos

[(
t

120

)2
]
,

for 0 ≤ t ≤ 150, then ḡ, the average rate of flow for that time interval is given
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by

ḡ =
1

150− 0

∫ 150

0
g(t) dt (4)

=
1

150 · 500

∫ 150

0
t cos

(
t

120

)2

dt (5)

=
120 · 120

2 · 150 · 500

∫ 150

0

2

120
· t

120
· cos

(
t

120

)2

dt (6)

=
12

125
sin

(
t

120

)2 ∣∣∣∣150
0

(7)

=
12

125
sin

25

16
∼ 0.095997. (8)

(d) With g as given, we have

g′(t) =
1

500
· cos

(
t

120

)2

− t

500
· 2t

120
· 1

120
· sin

(
t

120

)2

(9)

=
1

500
· cos

(
t

120

)2

− t2

3600000
sin

(
t

120

)2

(10)

Thus,

g′(140) =
1

500
cos

49

36
− 49

9000
sin

49

36
. (11)

2. (a) If the position vector, r of the moving particle is given by r(t) = 〈x(t), y(t)〉,
with x′(t) = ecos t, y(t) = 2 sin t, then the velocity vector is v(t) = r′(t) =
〈x′(t), y′(t)〉 = 〈ecos t, 2 cos t〉, and the acceleration vector is a(t) = v′(t) =
〈x′′(t), y′′(t)〉. We have r(t) = 〈x(t), 2 sin t〉, so the desired acceleration vector is

a(t) = 〈x′′(t), y′′(t)〉 (12)

= 〈−ecos t sin t,−2 sin t〉. (13)

This gives

a(1) = 〈−ecos 1 sin 1,−2 sin 1〉 (14)

= 〈−1.44441,−1.68294〉. (15)

(b) Speed, s(t), at time t is given by

s(t) =
√
v(t) · v(t) (16)

=
√

[x′(t)]2 + [y′(t)]2 (17)

=
√
e2 cos t + 4 cos2 t. (18)
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Thus, we seek the smallest value of t in [0, π] for which√
e2 cos t + 4 cos2 t = 1.5. (19)

We solve numerically, and we find that this equation has two solutions in [0, π]:
t ∼ 1.25447, and t ∼ 2.35808. The smaller of these is t ∼ 1.25447.

(c) The slope of the line tangent to the path of the particle at t = 1 is given by

dy

dx

∣∣∣∣
t=1

=
y′(1)

x′(1)
(20)

=
2 cos 1

ecos 1
∼ 0.62953. (21)

For x(1), we write (using the Fundamental Theorem of Calculus)

x(1) = x(0) +

∫ 1

0
x′(τ) dτ (22)

= 1 +

∫ 1

0
ecos τ dτ (23)

∼ 3.34157, (24)

where we have carried out the integration numerically.

The x coordinate of the moving particle at time t = 1 is approximately 3.34157.

(d) The total distance traveled by the particle over the time interval 0 ≤ t ≤ π is∫ π

0
|v(τ)| dτ =

∫ π

0

√
[x′(τ)]2 + [y′(τ)]2 dτ (25)

=

∫ π

0

√
e2 cos τ + 4 cos2 τ dτ ∼ 6.03461. (26)

Once again, we have integrated numerically.

3. (a) See Figure 3a. (The slight dip at the right end of the curve doesn’t belong there;
M = 40 is a horizontal asymptote to the curve. But I was too lazy to figure out
how to coax cooperation out of the software I used to draw the curve on a copy
of the slope-field from the exam.)

(b) The line tangent, at (0, 5), to the graph of Problem 3a is

M = 5 +
1

4
(40− 5)t = 5 +

35

4
t (27)

For M when t = 2, this gives the approximate value 5 +
35

2
=

45

2
C◦.
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Figure 1: 3a

(c) Because

dM

dt
=

1

4
(40−M), (28)

we have

d2M

dt2
=

d

dt

[
1

4
(40−M)

]
(29)

= −1

4

dM

dt
(30)

= − 1

16
(40−M). (31)

When 0 ≤ M < 40, it is clear that M ′′ < 0; in particular, M ′′ < 0 when t = 0
and M = 5. This means that the graph of M is concave downward near the point
(0, 5) so that its tangent lines lie above the curve in that region. Consequently,
the approximation of Problem 3b is an underestimate for the actual value of
M(2).

(d) We are given the initial value problem

dM

dt
=

1

4
(40−M); (32)

M(0) = 5. (33)
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Let us suppose that the function ϕ gives a solution to this problem, so that

ϕ′(t) =
1

4
[40− ϕ(t)], (34)

and

ϕ(0) = 5. (35)

By continuity, ϕ(t) > 0 when t is close to 0. So, at least when t is near 0, we
may write

4ϕ′(t)

40− ϕ(t)
= 1. (36)

From this, it follows that

4

∫ t

0

ϕ′(τ)

40− ϕ(τ)
dτ =

∫ t

0
dτ, (37)

at least when t is close to zero. In order to carry out the integration on the left
side of (37), we make the substituion M = M(t) = ϕ(t); dM = ϕ′(t) dt. We
carry out the integration on the right, and (37) becomes∫ ϕ(t)

ϕ(0)

dM

40−M
=
t

4
. (38)

As long as t > 0 is not too big, we know, by the continuity of ϕ and the fact
that ϕ(0) = 5, that ϕ(t) < 40. Thus, at least for positive values t that are not
too large, we have

− ln[40− ϕ(t)] + ln 35 =
t

4
, (39)

which, upon back-substituting and eliminating the logarithm, becomes

35

40−M
= et/4. (40)

Equation (40) is equivalent to

35e−t/4 = 40−M, or (41)

M(t) = 40− 35e−t/4. (42)

This is the solution we sought.
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4. (a) The function f , as given, does not have a relative minimum at x = 6. This
is so because f ′(x) > 0 on (5, 6) and on (6, 7)—making f a strictly increasing
function on the interval [5, 7].

(b) A function f is concave downward on any open interval where f ′ is a decreasing
function. The function for which the graph of f ′ is given can be seen to be
a decreasing function on the interval (−2, 0) and on the interval (4, 6). Conse-
quently, the function f is concave downward on the interval (−2, 0), and concave
downward on the interval (4, 6).

(c) By the Fundamental Theorem of Calculus, we can write

f(x) = f(2) +

∫ x

2
f ′(t) dt. (43)

On the interval [0, 4], we see from the graph of f ′ that f ′(x) = x − 2. Thus,
when 0 ≤ x ≤ 4, we have (because f(2) = 1 is given)

f(x) = 1 +

∫ x

2
(t− 2) dt (44)

= 1 +

([
t2

2
− 2t

] ∣∣∣∣x
2

)
(45)

=
1

2
x2 − 2x+ 3. (46)

Thus,

lim
x→2

6f(x)− 3x

x2 − 5x+ 6
= lim

x→2

3x2 − 15x+ 18

x2 − 5x+ 6
(47)

= lim
x→2

3(((((((
(x2 − 5x+ 6)

((((((
x2 − 5x+ 6

= lim
x→2

3 = 3. (48)

Alternate Solution: It is also possible to use the fact (given) that f(2) = 1,
and the fact (which we can read from the graph) that f ′(x) = 0 = lim

x→2
f ′(x), to

employ l’Hôpital’s Rule to solve this problem.

Because f ′ is given, we know that f is differentiable, and therefore continuous on
the interval [−2, 8]; moreover, it is clear from the graph of f ′ that f ′ is continuous
on that interval, and at x = 2, whence lim

x→2
f ′(x) = 0. So both the numerator and

the denominator of
6f(x)− 3x

x2 − 5x+ 6
are continuous and continuously differentiable at

x = 2. We also have

lim
x→2

[6f(x)− 3x] = 6 · 1− 3 · 2 = 0, (49)
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and

lim
x→2

[
x2 − 5x+ 6

]
= 22 − 5 · 2 + 6 = 0. (50)

It is therefore legitimate to see if we can use l’Hôpital’s rule to evaluate the limit
we seek:

We have,

lim
x→2

6f(x)− 3x

x2 − 5x+ 6
= lim

x→2

6f ′(x)− 3

2x− 5
=

6 · 0− 3

2 · 2− 5
= 3. (51)

The limit exists, so l’Hôpital’s rule justifies the first of the equalities in (51).

(d) If a differentiable function, g, has an absolute minimum at x = a in an interval
[α, β], then the value of its derivative, g′(a) must vanish or a must be one of α
and β. We see from the given graph that f ′(x) vanishes only at x = −1, x = 2,
and x = 6. We have already [see Problem (4a)] ruled out x = 6 as a possibility
for the function f of this problem: we saw there that f doesn’t have even a
relative minimum there—and we know that an absolute minimum must be a
relative minimum.

There can’t be a relative minimum (or, consequently, an absolute minimum)
for f at x = −1 because f ′(x) > 0 when −2 < x < −1—meaning that f is
increasing immediately to the left of x = 1).

We also know that f must have an absolute minimum in the interval [−2, 8],
because f is differentiable, and therefore continuous, throughout that interval, so
that the Extreme Value Theorem guarantees an absolute minimum somewhere
therein. We have ruled out x = 6 and x = −1. So the absolute minimum lies at
one of the points {−2, 2, 8}.
We know [see Problem (4c)] that

f(x) = f(2) +

∫ x

2
f ′(t) dt. (52)

We see (by considering what has been given and using the areas—which we can
decompose into triangles and squares from which circumscribed quarter-disks
have been removed—between the curve y = f ′(x) and the x-axis) to evaluate
the integral, that

f(−2) = 1 + (2 + 1− 1) = 3; (53)

f(2) = 1; (54)

f(8) = 1 + [2 + (8− 2π)] = 11− 2π ∼ 4.72. (55)

We see that f assumes its absolute minimum value on [−2, 8] at x = 2, where
f(2) = 1.
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5. (a) The area of the region that lies below the curve y = f(x) but above the curve
y = g(x) as shown is∫ 3

0
[f(t)− g(t)] dt =

∫ 3

0
f(t) dt−

∫ 3

0
g(t) dt (56)

= 10−
∫ 3

0

12 dt

3 + t
(57)

= 10−

(
12 ln |3 + t|

∣∣∣∣3
0

)
(58)

= 10− 12 [ln 6− ln 3] = 10− 12 ln 2 ∼ 1.68223. (59)

(b) We calculate ∫ ∞
0

[g(x)]2 dx = lim
T→∞

∫ T

0

(
12

3 + x

)2

dx (60)

= − lim
T→∞

(
144

3 + x

) ∣∣∣∣T
0

(61)

= − lim
T→∞

[(
144

3 + T

)
−
(

144

3 + 0

)]
(62)

= 48. (63)

The improper integral converges to 48.

(c) We put

u = x; dv = f ′(x)dx (64)

and we may take

du = dx; v = f(x). (65)

Integrating by parts, we find that∫ 3

0
xf ′(x) dx =

∫ 3

0
u dv (66)

= uv

∣∣∣∣3
0

−
∫ 3

0
v du (67)

= xf(x)

∣∣∣∣3
0

−
∫ 3

0
f(x) dx (68)

= 3 · f(3)− 0 · f(0)− 10 (69)

= 3 · 2− 10 = −4. (70)
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6. We are given that f has derivatives of all orders throughout R and that:

f(0) = 2; (71)

f ′(0) = 3; (72)

f ′′(x) = −f(x2) (73)

f ′′′(x) = −2x · f ′(x2). (74)

(a)

f (4)(x) =
d

dx
f ′′′(x) (75)

=
d

dx

[
−2x · f ′(x2)

]
(76)

= −2f ′(x2)− 4x2f ′′(x2). (77)

Thus,

f(0) = 2; (78)

f ′(0) = 3; (79)

f ′′(0) = −f(02) = −f(0) = −2; (80)

f ′′′(0) = −2 · 0 · f ′(0) = 0; (81)

f (4)(0) = −2f ′(0)− 4 · 02f ′′(02) = −6− 0 = −6. (82)

Put an =
1

n!
f (n)(0) for n = 0, . . . , 4. Then

a0 =
f(0)

0!
= 2; (83)

a1 =
f ′(0)

1!
= 3 : (84)

a2 =
f ′′(0)

2!
= −1; (85)

a3 =
f (3)(0)

3!
= 0; and (86)

a4 =
f (4)(0)

4!
= −1

4
. (87)

So T4(x), the desired fourth degree Taylor polynomial, is given by

T4(x) =

4∑
n=0

anx
n (88)

= 2 + 3x− x2 − 1

4
x4. (89)
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(b) If |f (5)(x) ≤ 15 for 0 ≤ x ≤ 0.5, the Lagrange error bound gives

|f(x)− T4(x)| ≤ 15

5!
· |xn| (90)

for 0 ≤ x ≤ 0.5. Thus,

|f(0.1)− T4(0.1)| ≤ 1

8
|0.1|5 (91)

|f(0.1)− T (0.1)| ≤ 1.25× 10−6 < 10−5, as required. (92)

(c) If g(0) = 4 and g′(x) = exf(x), then

g(0) = 4; (93)

g′(0) = e0f(0) = 1 · 2 = 2; (94)

g′′(0) = e0f(0) + e0f ′(0) = 2 + 1 · 3 = 5. (95)

Thus, the second degree Taylor polynomial, P2(x), for g(x), expanded at x = 0
is

P2(x) = g(0) + g′(0)x+
g′′(0)

2
x2; (96)

= 4 + 2x+
5

2
x2. (97)
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