Solutions to 2023 AP Calculus BC Free Response Questions

Louis A. Talman, Ph. D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

May xx, 2023

1. (a) The integral $\int_{60}^{135} f(t) d t$ gives, in gallons, the amount of gas pumped into the gas tank during the time interval $60 \leq t \leq 135$. This amount is given by

$$
\begin{align*}
\int_{60}^{135} f(t) d t & \sim f(90) \cdot 30+f(120) \cdot 30+f(135) \cdot 15 \tag{1}\\
& =0.15 \cdot 30+0.10 \cdot 30+0.05 \cdot 15=8.25 \text { gallons } \tag{2}
\end{align*}
$$

where we have used " \sim " to mean "is approximately equal to."
(b) The function f is given differentiable, presumably on at least the interior of its domain, and therefore certainly on the interval $(60,120)$ because $(60,120) \subseteq$ $(0,150)$. It also follows from the differentiability of f on $(0,150)$ that f is continuous (and differentiable) on $[60,120]$. We may therefore apply the Mean Value Theorem to f on $[60,120]$ to conclude that there is a number, c, in the interval $(60,120)$ such that

$$
\begin{equation*}
f^{\prime}(c)(120-60)=f(120)-f(60)=0 . \tag{3}
\end{equation*}
$$

We conclude that there must be a number with the required properties.
(c) If the rate of flow of gasoline be modeled by

$$
g(t)=\frac{t}{500} \cos \left[\left(\frac{t}{120}\right)^{2}\right]
$$

for $0 \leq t \leq 150$, then \bar{g}, the average rate of flow for that time interval is given
by

$$
\begin{align*}
\bar{g} & =\frac{1}{150-0} \int_{0}^{150} g(t) d t \tag{4}\\
& =\frac{1}{150 \cdot 500} \int_{0}^{150} t \cos \left(\frac{t}{120}\right)^{2} d t \tag{5}\\
& =\frac{120 \cdot 120}{2 \cdot 150 \cdot 500} \int_{0}^{150} \frac{2}{120} \cdot \frac{t}{120} \cdot \cos \left(\frac{t}{120}\right)^{2} d t \tag{6}\\
& =\left.\frac{12}{125} \sin \left(\frac{t}{120}\right)^{2}\right|_{0} ^{150} \tag{7}\\
& =\frac{12}{125} \sin \frac{25}{16} \sim 0.095997 . \tag{8}
\end{align*}
$$

(d) With g as given, we have

$$
\begin{align*}
g^{\prime}(t) & =\frac{1}{500} \cdot \cos \left(\frac{t}{120}\right)^{2}-\frac{t}{500} \cdot \frac{2 t}{120} \cdot \frac{1}{120} \cdot \sin \left(\frac{t}{120}\right)^{2} \tag{9}\\
& =\frac{1}{500} \cdot \cos \left(\frac{t}{120}\right)^{2}-\frac{t^{2}}{3600000} \sin \left(\frac{t}{120}\right)^{2} \tag{10}
\end{align*}
$$

Thus,

$$
\begin{equation*}
g^{\prime}(140)=\frac{1}{500} \cos \frac{49}{36}-\frac{49}{9000} \sin \frac{49}{36} . \tag{11}
\end{equation*}
$$

2. (a) If the position vector, \mathbf{r} of the moving particle is given by $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, with $x^{\prime}(t)=e^{\cos t}, y(t)=2 \sin t$, then the velocity vector is $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=$ $\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle=\left\langle e^{\cos t}, 2 \cos t\right\rangle$, and the acceleration vector is $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=$ $\left\langle x^{\prime \prime}(t), y^{\prime \prime}(t)\right\rangle$. We have $\mathbf{r}(t)=\langle x(t), 2 \sin t\rangle$, so the desired acceleration vector is

$$
\begin{align*}
\mathbf{a}(t) & =\left\langle x^{\prime \prime}(t), y^{\prime \prime}(t)\right\rangle \tag{12}\\
& =\left\langle-e^{\cos t} \sin t,-2 \sin t\right\rangle . \tag{13}
\end{align*}
$$

This gives

$$
\begin{align*}
\mathbf{a}(1) & =\left\langle-e^{\cos 1} \sin 1,-2 \sin 1\right\rangle \tag{14}\\
& =\langle-1.44441,-1.68294\rangle . \tag{15}
\end{align*}
$$

(b) Speed, $s(t)$, at time t is given by

$$
\begin{align*}
s(t) & =\sqrt{\mathbf{v}(t) \cdot \mathbf{v}(t)} \tag{16}\\
& =\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} \tag{17}\\
& =\sqrt{e^{2 \cos t}+4 \cos ^{2} t} . \tag{18}
\end{align*}
$$

Thus, we seek the smallest value of t in $[0, \pi]$ for which

$$
\begin{equation*}
\sqrt{e^{2 \cos t}+4 \cos ^{2} t}=1.5 \tag{19}
\end{equation*}
$$

We solve numerically, and we find that this equation has two solutions in $[0, \pi]$: $t \sim 1.25447$, and $t \sim 2.35808$. The smaller of these is $t \sim 1.25447$.
(c) The slope of the line tangent to the path of the particle at $t=1$ is given by

$$
\begin{align*}
\left.\frac{d y}{d x}\right|_{t=1} & =\frac{y^{\prime}(1)}{x^{\prime}(1)} \tag{20}\\
& =\frac{2 \cos 1}{e^{\cos 1}} \sim 0.62953 . \tag{21}
\end{align*}
$$

For $x(1)$, we write (using the Fundamental Theorem of Calculus)

$$
\begin{align*}
x(1) & =x(0)+\int_{0}^{1} x^{\prime}(\tau) d \tau \tag{22}\\
& =1+\int_{0}^{1} e^{\cos \tau} d \tau \tag{23}\\
& \sim 3.34157, \tag{24}
\end{align*}
$$

where we have carried out the integration numerically.
The x coordinate of the moving particle at time $t=1$ is approximately 3.34157 .
(d) The total distance traveled by the particle over the time interval $0 \leq t \leq \pi$ is

$$
\begin{align*}
\int_{0}^{\pi}|\mathbf{v}(\tau)| d \tau & =\int_{0}^{\pi} \sqrt{\left[x^{\prime}(\tau)\right]^{2}+\left[y^{\prime}(\tau)\right]^{2}} d \tau \tag{25}\\
& =\int_{0}^{\pi} \sqrt{e^{2 \cos \tau}+4 \cos ^{2} \tau} d \tau \sim 6.03461 . \tag{26}
\end{align*}
$$

Once again, we have integrated numerically.
3. (a) See Figure 3a. (The slight dip at the right end of the curve doesn't belong there; $M=40$ is a horizontal asymptote to the curve. But I was too lazy to figure out how to coax cooperation out of the software I used to draw the curve on a copy of the slope-field from the exam.)
(b) The line tangent, at $(0,5)$, to the graph of Problem 3a is

$$
\begin{equation*}
M=5+\frac{1}{4}(40-5) t=5+\frac{35}{4} t \tag{27}
\end{equation*}
$$

For M when $t=2$, this gives the approximate value $5+\frac{35}{2}=\frac{45}{2} \mathrm{C}^{\circ}$.

Figure 1: 3 a
(c) Because

$$
\begin{equation*}
\frac{d M}{d t}=\frac{1}{4}(40-M) \tag{28}
\end{equation*}
$$

we have

$$
\begin{align*}
\frac{d^{2} M}{d t^{2}} & =\frac{d}{d t}\left[\frac{1}{4}(40-M)\right] \tag{29}\\
& =-\frac{1}{4} \frac{d M}{d t} \tag{30}\\
& =-\frac{1}{16}(40-M) . \tag{31}
\end{align*}
$$

When $0 \leq M<40$, it is clear that $M^{\prime \prime}<0$; in particular, $M^{\prime \prime}<0$ when $t=0$ and $M=5$. This means that the graph of M is concave downward near the point $(0,5)$ so that its tangent lines lie above the curve in that region. Consequently, the approximation of Problem 3b is an underestimate for the actual value of $M(2)$.
(d) We are given the initial value problem

$$
\begin{align*}
\frac{d M}{d t} & =\frac{1}{4}(40-M) \tag{32}\\
M(0) & =5 \tag{33}
\end{align*}
$$

Let us suppose that the function φ gives a solution to this problem, so that

$$
\begin{equation*}
\varphi^{\prime}(t)=\frac{1}{4}[40-\varphi(t)], \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(0)=5 . \tag{35}
\end{equation*}
$$

By continuity, $\varphi(t)>0$ when t is close to 0 . So, at least when t is near 0 , we may write

$$
\begin{equation*}
\frac{4 \varphi^{\prime}(t)}{40-\varphi(t)}=1 \tag{36}
\end{equation*}
$$

From this, it follows that

$$
\begin{equation*}
4 \int_{0}^{t} \frac{\varphi^{\prime}(\tau)}{40-\varphi(\tau)} d \tau=\int_{0}^{t} d \tau \tag{37}
\end{equation*}
$$

at least when t is close to zero. In order to carry out the integration on the left side of (37), we make the substituion $M=M(t)=\varphi(t) ; d M=\varphi^{\prime}(t) d t$. We carry out the integration on the right, and (37) becomes

$$
\begin{equation*}
\int_{\varphi(0)}^{\varphi(t)} \frac{d M}{40-M}=\frac{t}{4} \tag{38}
\end{equation*}
$$

As long as $t>0$ is not too big, we know, by the continuity of φ and the fact that $\varphi(0)=5$, that $\varphi(t)<40$. Thus, at least for positive values t that are not too large, we have

$$
\begin{equation*}
-\ln [40-\varphi(t)]+\ln 35=\frac{t}{4} \tag{39}
\end{equation*}
$$

which, upon back-substituting and eliminating the logarithm, becomes

$$
\begin{equation*}
\frac{35}{40-M}=e^{t / 4} \tag{40}
\end{equation*}
$$

Equation (40) is equivalent to

$$
\begin{align*}
35 e^{-t / 4} & =40-M, \text { or } \tag{41}\\
M(t) & =40-35 e^{-t / 4} . \tag{42}
\end{align*}
$$

This is the solution we sought.
4. (a) The function f, as given, does not have a relative minimum at $x=6$. This is so because $f^{\prime}(x)>0$ on $(5,6)$ and on $(6,7)$-making f a strictly increasing function on the interval [5,7$]$.
(b) A function f is concave downward on any open interval where f^{\prime} is a decreasing function. The function for which the graph of f^{\prime} is given can be seen to be a decreasing function on the interval $(-2,0)$ and on the interval $(4,6)$. Consequently, the function f is concave downward on the interval $(-2,0)$, and concave downward on the interval $(4,6)$.
(c) By the Fundamental Theorem of Calculus, we can write

$$
\begin{equation*}
f(x)=f(2)+\int_{2}^{x} f^{\prime}(t) d t \tag{43}
\end{equation*}
$$

On the interval $[0,4]$, we see from the graph of f^{\prime} that $f^{\prime}(x)=x-2$. Thus, when $0 \leq x \leq 4$, we have (because $f(2)=1$ is given)

$$
\begin{align*}
f(x) & =1+\int_{2}^{x}(t-2) d t \tag{44}\\
& =1+\left(\left.\left[\frac{t^{2}}{2}-2 t\right]\right|_{2} ^{x}\right) \tag{45}\\
& =\frac{1}{2} x^{2}-2 x+3 . \tag{46}
\end{align*}
$$

Thus,

$$
\begin{align*}
& \lim _{x \rightarrow 2} \frac{6 f(x)-3 x}{x^{2}-5 x+6}=\lim _{x \rightarrow 2} \frac{3 x^{2}-15 x+18}{x^{2}-5 x+6} \tag{47}\\
&=\lim _{x \rightarrow 2} \frac{3\left(x^{2}-5 x+6\right)}{x^{2}-5 x+6} \tag{48}\\
&=\lim _{x \rightarrow 2} 3=3 .
\end{align*}
$$

Alternate Solution: It is also possible to use the fact (given) that $f(2)=1$, and the fact (which we can read from the graph) that $f^{\prime}(x)=0=\lim _{x \rightarrow 2} f^{\prime}(x)$, to employ l'Hôpital's Rule to solve this problem.
Because f^{\prime} is given, we know that f is differentiable, and therefore continuous on the interval $[-2,8]$; moreover, it is clear from the graph of f^{\prime} that f^{\prime} is continuous on that interval, and at $x=2$, whence $\lim _{x \rightarrow 2} f^{\prime}(x)=0$. So both the numerator and the denominator of $\frac{6 f(x)-3 x}{x^{2}-5 x+6}$ are continuous and continuously differentiable at $x=2$. We also have

$$
\begin{equation*}
\lim _{x \rightarrow 2}[6 f(x)-3 x]=6 \cdot 1-3 \cdot 2=0 \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow 2}\left[x^{2}-5 x+6\right]=2^{2}-5 \cdot 2+6=0 \tag{50}
\end{equation*}
$$

It is therefore legitimate to see if we can use l'Hôpital's rule to evaluate the limit we seek:
We have,

$$
\begin{equation*}
\lim _{x \rightarrow 2} \frac{6 f(x)-3 x}{x^{2}-5 x+6}=\lim _{x \rightarrow 2} \frac{6 f^{\prime}(x)-3}{2 x-5}=\frac{6 \cdot 0-3}{2 \cdot 2-5}=3 . \tag{51}
\end{equation*}
$$

The limit exists, so l'Hôpital's rule justifies the first of the equalities in (51).
(d) If a differentiable function, g, has an absolute minimum at $x=a$ in an interval $[\alpha, \beta]$, then the value of its derivative, $g^{\prime}(a)$ must vanish or a must be one of α and β. We see from the given graph that $f^{\prime}(x)$ vanishes only at $x=-1, x=2$, and $x=6$. We have already [see Problem (4a)] ruled out $x=6$ as a possibility for the function f of this problem: we saw there that f doesn't have even a relative minimum there - and we know that an absolute minimum must be a relative minimum.
There can't be a relative minimum (or, consequently, an absolute minimum) for f at $x=-1$ because $f^{\prime}(x)>0$ when $-2<x<-1-$ meaning that f is increasing immediately to the left of $x=1$).
We also know that f must have an absolute minimum in the interval $[-2,8]$, because f is differentiable, and therefore continuous, throughout that interval, so that the Extreme Value Theorem guarantees an absolute minimum somewhere therein. We have ruled out $x=6$ and $x=-1$. So the absolute minimum lies at one of the points $\{-2,2,8\}$.
We know [see Problem (4c)] that

$$
\begin{equation*}
f(x)=f(2)+\int_{2}^{x} f^{\prime}(t) d t \tag{52}
\end{equation*}
$$

We see (by considering what has been given and using the areas-which we can decompose into triangles and squares from which circumscribed quarter-disks have been removed-between the curve $y=f^{\prime}(x)$ and the x-axis) to evaluate the integral, that

$$
\begin{align*}
f(-2) & =1+(2+1-1)=3 \tag{53}\\
f(2) & =1 \tag{54}\\
f(8) & =1+[2+(8-2 \pi)]=11-2 \pi \sim 4.72 \tag{55}
\end{align*}
$$

We see that f assumes its absolute minimum value on $[-2,8]$ at $x=2$, where $f(2)=1$.
5. (a) The area of the region that lies below the curve $y=f(x)$ but above the curve $y=g(x)$ as shown is

$$
\begin{align*}
\int_{0}^{3}[f(t)-g(t)] d t & =\int_{0}^{3} f(t) d t-\int_{0}^{3} g(t) d t \tag{56}\\
& =10-\int_{0}^{3} \frac{12 d t}{3+t} \tag{57}\\
& =10-\left(\left.12 \ln |3+t|\right|_{0} ^{3}\right) \tag{58}\\
& =10-12[\ln 6-\ln 3] \quad=10-12 \ln 2 \sim 1.68223 . \tag{59}
\end{align*}
$$

(b) We calculate

$$
\begin{align*}
\int_{0}^{\infty}[g(x)]^{2} d x & =\lim _{T \rightarrow \infty} \int_{0}^{T}\left(\frac{12}{3+x}\right)^{2} d x \tag{60}\\
& =-\left.\lim _{T \rightarrow \infty}\left(\frac{144}{3+x}\right)\right|_{0} ^{T} \tag{61}\\
& =-\lim _{T \rightarrow \infty}\left[\left(\frac{144}{3+T}\right)-\left(\frac{144}{3+0}\right)\right] \tag{62}\\
& =48 \tag{63}
\end{align*}
$$

The improper integral converges to 48 .
(c) We put

$$
\begin{equation*}
u=x ; \quad d v=f^{\prime}(x) d x \tag{64}
\end{equation*}
$$

and we may take

$$
\begin{equation*}
d u=d x ; \quad v=f(x) \tag{65}
\end{equation*}
$$

Integrating by parts, we find that

$$
\begin{align*}
\int_{0}^{3} x f^{\prime}(x) d x & =\int_{0}^{3} u d v \tag{66}\\
& =\left.u v\right|_{0} ^{3}-\int_{0}^{3} v d u \tag{67}\\
& =\left.x f(x)\right|_{0} ^{3}-\int_{0}^{3} f(x) d x \tag{68}\\
& =3 \cdot f(3)-0 \cdot f(0)-10 \tag{69}\\
& =3 \cdot 2-10=-4 \tag{70}
\end{align*}
$$

6. We are given that f has derivatives of all orders throughout \mathbb{R} and that:

$$
\begin{align*}
f(0) & =2 \tag{71}\\
f^{\prime}(0) & =3 \tag{72}\\
f^{\prime \prime}(x) & =-f\left(x^{2}\right) \tag{73}\\
f^{\prime \prime \prime}(x) & =-2 x \cdot f^{\prime}\left(x^{2}\right) . \tag{74}
\end{align*}
$$

(a)

$$
\begin{align*}
f^{(4)}(x) & =\frac{d}{d x} f^{\prime \prime \prime}(x) \tag{75}\\
& =\frac{d}{d x}\left[-2 x \cdot f^{\prime}\left(x^{2}\right)\right] \tag{76}\\
& =-2 f^{\prime}\left(x^{2}\right)-4 x^{2} f^{\prime \prime}\left(x^{2}\right) . \tag{77}
\end{align*}
$$

Thus,

$$
\begin{align*}
f(0) & =2 \tag{78}\\
f^{\prime}(0) & =3 \tag{79}\\
f^{\prime \prime}(0) & =-f\left(0^{2}\right)=-f(0)=-2 \tag{80}\\
f^{\prime \prime \prime}(0) & =-2 \cdot 0 \cdot f^{\prime}(0)=0 ; \tag{81}\\
f^{(4)}(0) & =-2 f^{\prime}(0)-4 \cdot 0^{2} f^{\prime \prime}\left(0^{2}\right)=-6-0=-6 . \tag{82}
\end{align*}
$$

Put $a_{n}=\frac{1}{n!} f^{(n)}(0)$ for $n=0, \ldots, 4$. Then

$$
\begin{align*}
& a_{0}=\frac{f(0)}{0!}=2 ; \tag{83}\\
& a_{1}=\frac{f^{\prime}(0)}{1!}=3: \tag{84}\\
& a_{2}=\frac{f^{\prime \prime}(0)}{2!}=-1 ; \tag{85}\\
& a_{3}=\frac{f^{(3)}(0)}{3!}=0 ; \text { and } \tag{86}\\
& a_{4}=\frac{f^{(4)}(0)}{4!}=-\frac{1}{4} . \tag{87}
\end{align*}
$$

So $T_{4}(x)$, the desired fourth degree Taylor polynomial, is given by

$$
\begin{align*}
T_{4}(x) & =\sum_{n=0}^{4} a_{n} x^{n} \tag{88}\\
& =2+3 x-x^{2}-\frac{1}{4} x^{4} . \tag{89}
\end{align*}
$$

(b) If $\mid f^{(5)}(x) \leq 15$ for $0 \leq x \leq 0.5$, the Lagrange error bound gives

$$
\begin{equation*}
\left|f(x)-T_{4}(x)\right| \leq \frac{15}{5!} \cdot\left|x^{n}\right| \tag{90}
\end{equation*}
$$

for $0 \leq x \leq 0.5$. Thus,

$$
\begin{align*}
\left|f(0.1)-T_{4}(0.1)\right| & \leq \frac{1}{8}|0.1|^{5} \tag{91}\\
|f(0.1)-T(0.1)| & \leq 1.25 \times 10^{-6}<10^{-5}, \text { as required. } \tag{92}
\end{align*}
$$

(c) If $g(0)=4$ and $g^{\prime}(x)=e^{x} f(x)$, then

$$
\begin{align*}
g(0) & =4 \tag{93}\\
g^{\prime}(0) & =e^{0} f(0)=1 \cdot 2=2 \tag{94}\\
g^{\prime \prime}(0) & =e^{0} f(0)+e^{0} f^{\prime}(0)=2+1 \cdot 3=5 \tag{95}
\end{align*}
$$

Thus, the second degree Taylor polynomial, $P_{2}(x)$, for $g(x)$, expanded at $x=0$ is

$$
\begin{align*}
P_{2}(x) & =g(0)+g^{\prime}(0) x+\frac{g^{\prime \prime}(0)}{2} x^{2} \tag{96}\\
& =4+2 x+\frac{5}{2} x^{2} . \tag{97}
\end{align*}
$$

