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We use the symbol “∼” to mean “is approximately equal to” throughout this document.

1. We are given C(t) = 7.6 arctan 0.2t.

A. The average number of acres affected by the invasive species from t = 0 to t = 4 is

1

4− 0

∫ 4

0

C(s) ds =
7.6

4

∫ 4

0

arctan 0.2s ds (1)

= 1.9
[
s arctan 0.2s− 2.5 ln(s2 + 25)

] ∣∣∣∣4
0

∼ 2.778 (2)

B. The instantaneous rate of change of C is

C ′(t) =
38

25 + t2
, (3)

while C, the average rate of change of C over the time interval 0 ≤ t ≤ 4, is

C =
C(4)− C(0)

4− 0
=

7.6 arctan 0.8− 7.6 arctan 0

4− 0
. (4)

So we must solve the equation
38

25 + t2
=
C(4)− C(0)

4− 0
for t. We have

38

25 + t2
=
C(4)− C(0)

4− 0
; (5)

C(4)(25 + t2) = 152; (6)

t2 =
152

C(4)
− 25 =

152

7.6 arctan 0.8
− 25 ∼ 4.64100553; (7)

t ∼
√

4.64100553 ∼ 2.154 weeks. (8)
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C. The end behavior of the rate of change in the number of acres affected by the species is
given by

lim
t→∞

C ′(t) = lim
t→∞

38

25 + t2
(9)

= lim
t→∞

38t−2

25t−2 + 1
= 0. (10)

D. We seek the maximum value of

A(t) = C(t)− 0.1

∫ t

4

ln(s) ds (11)

in the interval 4 ≤ t ≤ 36. To this end, we note that

A′(t) =
38

25 + t2
− 0.1 ln t. (12)

Machine calculation shows that the only critical point for A (i.e., solution of A′(t) = 0
in the interval 4 ≤ t ≤ 36 is at t ∼ 11.44169985. We find that

A(4) ∼ 5.12803 (13)

A(11.4416998) ∼ 7.31698 (14)

A(36) ∼ 1.74306 (15)

Thus, we conclude that, for 4 ≤ t ≤ 36, A(t) reaches its maximum value of about 7.317
acres at the time t ∼ 11.442 weeks.
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2. A. The area A of R is given by

A =

∫ 3

0

[g(x)− f(x)] dx (16)

=

∫ 3

0

[
(x+ sinπx)− (x2 − 2x)

]
dx (17)

=

∫ 3

0

[
3x− x2 + sinπx

]
dx (18)

=

[
3

2
x2 − 1

3
x3 − 1

π
cosπx

] ∣∣∣∣3
0

(19)

=

(
9

2
+

1

π

)
−
(
− 1

π

)
=

9

2
+

2

π
. (20)

B. The volume V described is given by

V =

∫ 3

0

x [g(x)− f(x)] dx (21)

=

∫ 3

0

[
3x2 − x3 + x sinπx

]
dx (22)

=

[
x3 − 1

4
x4 − 1

π
x cosπx+

1

π2
sinπx

] ∣∣∣∣3
0

(23)

=
27

4
+

3

π
. (24)

C. The volume V described is given by

V = π

∫ 3

0

(
[g(x) + 2]

2 − [f(x) + 2]
2
)
dx (25)

= π

∫ 3

0

(
12x− 7x2 + 4x3 − x4 + 4 sinπx+ 2x sinπx+ sin2 πx

)
dx (26)

Note: It can easily—but somewhat tediously—be shown that V =
249

10
π + 14 ∼ 92.226.

D. The two tangent lines are parallel to each other when f ′(x)− g′(x), so—because f ′(x) =
2x− 1—we must solve the equation

2x− 1 = 1 + π cosπx, (27)

given that 0 ≤ x ≤ 1. Numeric solution of this equation leads to x ∼ 0.676 as the value
of x in (0, 1) for which the two tangent lines are parallel.
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3. A. Approximating R′(1) using the average rate of change of R over the interval 0 ≤ t ≤ 2
gives

R′(1) ∼ R(2)−R(0)

2− 0
(28)

=
100− 90

2
= 5 words per minute per minute. (29)

B. The function R is given differentiable, and differentiable functions are continuous, so
R is continuous. We see from the table that R(8) = 150 and R(10) = 162. Also,
150 ≤ 155 ≤ 162. By the Intermediate Value Theorem for Continuous Functions, there
must be a number c such that 0 < 8 < c < 10 and R(c) = 155.

C. We can approximate

∫ 10

0

R(t) dt by

∫ 10

0

R(t) dt ∼ 1

2
[R(0) +R(2)](2− 0) +

1

2
[R(2) +R(8)](8− 2) +

1

2
[R(8) +R(10)](10− 8)

(30)

∼ 1

2
[90 + 100] · 2 +

1

2
[100 + 150] · 6 +

1

2
[150 + 162] · 2 (31)

∼ 190 + 3 · 250 + 312 = 1252 (32)

D. Based on the model given, by the end of ten minutes, the teacher has read∫ 10

0

W (t) dt =

∫ 10

0

(
100 + 8t− 3

10
t2
)
dt (33)

=

[
100t+ 4t2 − 1

10
t3
] ∣∣∣∣10

0

(34)

= 1300 words. (35)
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4. A. If g(x) =

∫ x

6

g(t) dt, then, by the Fundamental Theorem of Calculus, g′(x) = f(x).

Combining this fact with what we read from the picture given, we see that g′(8) =
f(8) = 1.

B. The graph given for the function f is also, as we have seen above, the graph of g′.
Inflection points for g are to be found at points where g′ changes either from increasing
to decreasing or from decreasing to increasing1. But from the picture and what is given,
we see that g′ is decreasing on each of the intervals [−6,−3] and [3, 6], while it is increasing
on each of the intervals ]− 3, 3] and [6, 12]. From these observations, we conclude that g
has points of inflection at x = −3, at x = 3 and at x = 6.

C. From the definition and the graph given in the statement of the problem, we have

g(12) =

∫ 12

6

f(t) dt =
1

2
(12− 6) · 3 = 9, (36)

which is the area of a triangle of base 6 and height 3. On the other hand

g(0) =

∫ 0

6

f(t) dt = −1

2
π · 32 = −9

2
π, (37)

which is the negative of the area of a semicircle of radius 3.

D. g attains its absolute minimum on the interval [−6, 12] at either a critical point or an
endpoint. The critical points are those points, x, of (−6, 12) where g′(x) = f(x) = 0, or
x = 0 and x = 6. Summing signed areas of appropriate semicircles and triangles, we see
that

g(−6) = 0; (38)

g(0) = −9

2
π (39)

g(6) = 0 (40)

g(12) = 9. (41)

Consequently, the absolute minimum value of g(x) for x ∈ [−6, 12] is found at x = 0 and

is g(0) = −9

2
π.

1Some authors impose a requirement that the second derivative exist at an inflection point. We are ignoring such
a requirement. This could pose a problem for the readers.
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5. We are given

xH(t) = et
2−4t; (42)

vJ(t) = 2t(t2 − 1)3. (43)

A. The velocity vH(t) of particle H at time t is

vH(t) = x′H(t) (44)

= (2t− 4)et
2−4t, (45)

from which we find that

x′H(1) = (2 · 1− 4)e1
2−4·1 = −2e−3 (46)

B. The particles H and J are moving in opposite directions when their velocities have
opposing signs, or when vH(t) · vJ(t) < 0. To solve this inequality, we write

vH(t) · vJ(t) < 0; or (47)

(2t− 4)et
2−4t · 2t(t2 − 1)3 < 0. (48)

The exponential factor can’t be negative or zero, and can be ignored. Now 2t − 4 < 0
when t < 2; 2t < 0 when t < 0; and (t2 − 1)3 < 0 when −1 < t < 1. The inequality (48)
holds precisely when an odd number of the factors on its left side are negative. This is so
when −1 < t < 0 or 1 < t < 2. We are interested only in those t that lie in the interval
(0, 5), so our solution is the open interval (1, 2).

C. If sJ(t) denotes the speed of particleJ at time t, then sJ(t) ≥ 0 satisfies[
sJ(t)

]2
=
[
vJ(t)

]2
; (49)

whence

2sJ(t)s′J(t) = 2vJ(t)v′J(t), (50)

so that s′J(t) has the same sign as the product vJ(t)v′J(t). But

vJ(t)v′J(t) =
(
2t(t2 − 1)3

)
·
[
2(t2 − 1)3 + 12t2(t2 − 1)2

]
, (51)

so that vJ(2) ·v′J(2) = 52488 > 0. Consequently s′(2) > 0. Because s′(t) is continuous at
the point t = 2, we know that s′(t) is positive on some open interval centered at t = 2.
The function s must be increasing on that interval2 .

D. By the Fundamental Theorem of Calculus,

xJ(2)− xJ(0) =

∫ 2

0

vJ(t) dt. (52)

2The phrase “increasing at t = 2” is generally not defined by most authors of calculus textbooks.
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From what has been given, we see that

xJ(2) = 7 +

∫ 2

0

[
2t(t2 − 1)3

]
dt (53)

= 7 +

[
1

4
(t2 − 1)4

] ∣∣∣∣2
0

= 27. (54)
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6. A. If the curve G be given by y3− y2− y+
1

4
x2 = 0, then with a few exceptions, as long as

we consider (x, y) to be a point on G,

d

dx

(
y3 − y2 − y +

1

4
x2
)

=
d

dx
0; (55)

so that

3y2y′ − 2yy′ − y′ + 1

2
x = 0; (56)

and (
3y2 − 2y − 1

)
y′ = −1

2
x. (57)

From this it follows3 that

y′ =
−x

2(3y2 − 2y − 1)
, (58)

as required.

B. When x = 2 and y = −1, the equation y3 − y2 − y +
1

4
x2 = 0 becomes

(−1)3 − (−1)2 − (−1) +
1

4
(2)2 = 0, (59)

or

−1− 1 + 1 +
1

4
· 4 = 0, (60)

which is a true statement. So the point (2,−1) does lie on the curve G. The line tangent
to the curve G at the point (2,−1) is given by the equation

y = −1 +m(x− 2), (61)

where m = y′
∣∣∣∣
(2,−1)

. But

y′
∣∣∣∣
(2,−1)

=
−x

2(3y2 − 2y − 1)

∣∣∣∣
(2,−1)

(62)

=
−�2

�2[3(−1)2 − 2(−1)− 1]
= −1

4
. (63)

3As long as y 6= 1 and y 6= − 1
3

, where the denominator of the quotient in (58) vanishes. These are the exceptions

mentioned earlier. There is, it turns out, no point on G for which y = − 1
3

. There are two points on G where y = 1,

both of which are points where dy
dx

can’t be found by implicit differentiation. One of these turns out to be the point
needed in the next part of the question.
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The tangent line is therefore given by the equation

y = −1− 1

4
(x− 2). (64)

Because the tangent line lies close to the curve when x is close to 2, we can obtain an
approximation, y0 of the value of y for a point P : (1.6, y0) near (2,−1). We obtain

y0 = −1− 1

4

(
8

5
− 2

)
(65)

= −1 +
1

10
= − 9

10
= −0.9. (66)

Thus, the y-coordinate of the point P is given approximately4 by y0 ∼ −0.9.

C. In order to find vertical tangents to the curve G, given by F (x, y) = 0 where

F (x, y) = y3 − y2 − y +
1

4
x2, (67)

we must find points on G where
dx

dy
= 0. We again employ implicit differentiation, but

with respect to y this time5:

d

dy

(
y3 − y2 − y +

1

4
x2
)

=
d

dy
0; (68)

3y2 − 2y − 1 +
1

2
x
dx

dy
= 0; (69)

or

dx

dy
=

2
(
1 + 2y − 3y2

)
x

. (70)

Solving for zeros of this derivative, we find that y = 1 or y = −1

3
. We are interested

only in positive values of y and positive values of x, so we discard the second solution.
We have only, now, to find all positive values of x for which F (x, 1) = 0, or

13 − 12 − 1 +
1

4
x2 = 0; (71)

x2 = 4. (72)

(73)

The only positive value for x that satisfies this equation is x = 2. The point S we seek
is S : (2, 1), and the y-coordinate of this point is y = 1.

4More advanced methods give y0 ∼ −0.90031.
5See footnote 3 for the reason we take this approach.
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D. We differentiate the equation 2xy+ ln y = 8 implicitly with respect to t, treating both x
and y as functions of t:

d

dt
(2xy + ln y) =

d

dt
8; (74)

2ẋy + 2xẏ +
ẏ

y
= 0. (75)

Now we set x = 4, y = 1, and ẋ = 3 to obtain

2 · 3 · 1 + 2 · 4 · ẏ +
ẏ

1
= 0; (76)

6 + 9ẏ = 0; (77)

dy

dt
= ẏ = −2

3
. (78)
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