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We use the symbol “∼” to mean “is approximately equal to” throughout this document.

1. We are given C(t) = 7.6 arctan 0.2t.

A. The average number of acres affected by the invasive species from t = 0 to t = 4 is

1

4− 0

∫ 4

0

C(s) ds =
7.6

4

∫ 4

0

arctan 0.2s ds (1)

= 1.9
[
s arctan 0.2s− 2.5 ln(s2 + 25)

] ∣∣∣∣4
0

∼ 2.778 (2)

B. The instantaneous rate of change of C is

C ′(t) =
38

25 + t2
, (3)

while C, the average rate of change of C over the time interval 0 ≤ t ≤ 4, is

C =
C(4)− C(0)

4− 0
=

7.6 arctan 0.8− 7.6 arctan 0

4− 0
. (4)

So we must solve the equation
38

25 + t2
=
C(4)− C(0)

4− 0
for t. We have

38

25 + t2
=
C(4)− C(0)

4− 0
; (5)

C(4)(25 + t2) = 152; (6)

t2 =
152

C(4)
− 25 =

152

7.6 arctan 0.8
− 25 ∼ 4.64100553; (7)

t ∼
√

4.64100553 ∼ 2.154 weeks. (8)
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C. The end behavior of the rate of change in the number of acres affected by the species is
given by

lim
t→∞

C ′(t) = lim
t→∞

38

25 + t2
(9)

= lim
t→∞

38t−2

25t−2 + 1
= 0. (10)

D. We seek the maximum value of

A(t) = C(t)− 0.1

∫ t

4

ln(s) ds (11)

in the interval 4 ≤ t ≤ 36. To this end, we note that

A′(t) =
38

25 + t2
− 0.1 ln t. (12)

Machine calculation shows that the only critical point for A (i.e., solution of A′(t) = 0
in the interval 4 ≤ t ≤ 36 is at t ∼ 11.44169985. We find that

A(4) ∼ 5.12803 (13)

A(11.4416998) ∼ 7.31698 (14)

A(36) ∼ 1.74306 (15)

Thus, we conclude that, for 4 ≤ t ≤ 36, A(t) reaches its maximum value of about 7.317
acres at the time t ∼ 11.442 weeks.
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2. We are given r = 2 sin2 θ for 0 ≤ θ ≤ π.

A. The rate of change of r with respect to θ is

dr

dθ
=

d

dθ

(
2 sin2 θ

)
(16)

= 4 sin θ cos θ. (17)

Consequently, the rate of change of r with respect to θ when θ = 1.3 is

4 · (sin 1.3) · (cos 1.3) ∼ 1.031. (18)

B. We begin by finding the intersection points of the two curves; for this, we solve the
equation

2 sin2 θ =
1

2
; (19)

sin2 θ =
1

4
; (20)

sin θ = ±1

2
; (21)

(22)

The only solutions, θ, for which 0 ≤ θ ≤ π, are θ =
π

6
and θ =

5π

6
. Consequently, the

desired area between the two curves is

1

2

∫ 5π/6

π/6

[(
2 sin2 θ

)2 − 1

4

]
dθ =

1

2

∫ 5π/6

π/6

[
(1− cos 2θ)2 − 1

4

]
dθ (23)

=
1

2

∫ 5π/6

π/6

[
3

4
− 2 cos 2θ + cos2 2θ

]
dθ (24)

=
1

2

∫ 5π/6

π/6

[
3

4
− 2 cos 2θ +

(
1

2
+

1

2
cos 4θ

)]
dθ (25)

=
1

2

∫ 5π/6

π/6

[
7

4
− 2 cos 2θ +

1

2
cos 4θ

]
dθ (26)

=
1

2

(
7
√

3

8
+

5π

6

)
∼ 2.067 (27)

C. If 0 ≤ θ ≤ π

2
, the distance from the y-axis to the point (r, θ), which is the maximum

value of x(θ) = r(θ) cos θ, must be either at one of the endpoints or at a critical point
for x(θ). But the endpoints of this interval correspond to points on the y axis, where
x(θ) = 0, so we can discard these points. The critical points are at zeros of the function
x′(θ) = 4 sin θ cos2 θ − 2 sin3 θ. These zeros are to be found where sin θ = 0 and where

4 cos2 θ − 2 sin2 θ = 0; (28)
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or, equivalently, where

4− 6 sin2 θ = 0. (29)

This can be rewritten as

sin2 θ =
2

3
, (30)

whence

sin θ = ±
√

2

3
. (31)

We are interested only in first quadrant values for θ, so we can discard the negative

solution; and we find that our only critical point is at θ = θ0 = arcsin

(√
2

3

)
. We

conclude that

θ0 = arcsin

(√
2

3

)
∼ 0.955 (32)

is the value we want. The maximum value for x(θ) when 0 ≤ θ ≤ π

2
is thus

x(θ0) =
4
√

3

9
∼ 0.770. (33)

D The distance from the origin to the point with polar coordinates (r(θ), θ) is precisely
r(θ). Treating θ as a function of time t, we have

d

dt
r[θ(t)] =

d

dt

[
2 sin2 θ(t)

]
(34)

= 4 θ̇(t) sin θ(t) cos θ(t). (35)

We have been given a certain time t = t1 when θ(t1) = 1.3 and θ̇(t1) = 15. Thus, at the
time t = t1, the rate, ṙ, at which the particle’s distance from the origin changes with
respect to time is given by

ṙ = 4 θ̇(t1) sin θ(t1) cos θ(t1) (36)

= 60 · sin 1.3 · cos 1.3 ∼ 15.465. (37)
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3. A. Approximating R′(1) using the average rate of change of R over the interval 0 ≤ t ≤ 2
gives

R′(1) ∼ R(2)−R(0)

2− 0
(38)

=
100− 90

2
= 5 words per minute per minute. (39)

B. The function R is given differentiable, and differentiable functions are continuous, so
R is continuous. We see from the table that R(8) = 150 and R(10) = 162. Also,
150 ≤ 155 ≤ 162. By the Intermediate Value Theorem for Continuous Functions, there
must be a number c such that 0 < 8 < c < 10 and R(c) = 155.

C. We can approximate

∫ 10

0

R(t) dt by

∫ 10

0

R(t) dt ∼ 1

2
[R(0) +R(2)](2− 0) +

1

2
[R(2) +R(8)](8− 2) +

1

2
[R(8) +R(10)](10− 8)

(40)

∼ 1

2
[90 + 100] · 2 +

1

2
[100 + 150] · 6 +

1

2
[150 + 162] · 2 (41)

∼ 190 + 3 · 250 + 312 = 1252 (42)

D. Based on the model given, by the end of ten minutes, the teacher has read∫ 10

0

W (t) dt =

∫ 10

0

(
100 + 8t− 3

10
t2
)
dt (43)

=

[
100t+ 4t2 − 1

10
t3
] ∣∣∣∣10

0

(44)

= 1300 words. (45)
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4. A. If g(x) =

∫ x

6

g(t) dt, then, by the Fundamental Theorem of Calculus, g′(x) = f(x).

Combining this fact with what we read from the picture given, we see that g′(8) =
f(8) = 1.

B. The graph given for the function f is also, as we have seen above, the graph of g′.
Inflection points for g are to be found at points where g′ changes either from increasing
to decreasing or from decreasing to increasing1. But from the picture and what is given,
we see that g′ is decreasing on each of the intervals [−6,−3] and [3, 6], while it is increasing
on each of the intervals ]− 3, 3] and [6, 12]. From these observations, we conclude that g
has points of inflection at x = −3, at x = 3 and at x = 6.

C. From the definition and the graph given in the statement of the problem, we have

g(12) =

∫ 12

6

f(t) dt =
1

2
(12− 6) · 3 = 9, (46)

which is the area of a triangle of base 6 and height 3. On the other hand

g(0) =

∫ 0

6

f(t) dt = −1

2
π · 32 = −9

2
π, (47)

which is the negative of the area of a semicircle of radius 3.

D. g attains its absolute minimum on the interval [−6, 12] at either a critical point or an
endpoint. The critical points are those points, x, of (−6, 12) where g′(x) = f(x) = 0, or
x = 0 and x = 6. Summing signed areas of appropriate semicircles and triangles, we see
that

g(−6) = 0; (48)

g(0) = −9

2
π (49)

g(6) = 0 (50)

g(12) = 9. (51)

Consequently, the absolute minimum value of g(x) for x ∈ [−6, 12] is found at x = 0 and

is g(0) = −9

2
π.

1Some authors impose a requirement that the second derivative exist at an inflection point. We are ignoring such
a requirement. This could pose a problem for the readers.
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5. We are given that the function f is the solution the initial value problem

y′ = (3− x)y2; (52)

y(1) = −1. (53)

A. The function f is a solution of the differential equation. Thus, f ′(x) = (3 − x)[f(x)]2,
and we must have

f ′′(x) =
d

dx

{
(3− x)[f(x)]2

}
(54)

= 2f(x)f ′(x)(3− x)− [f(x)]2 (55)

= 2(3− x)2[f(x)]3 − [f(x)]2. (56)

We have

f(1) = −1; (57)

f ′(1) = (3− 1)(−1)2 = 2; (58)

whence we conclude that

f ′′(1) = 2(3− 1)2[f(1)]3 − [f(1)]2 = −9. (59)

B. T2(x), the second degree Taylor polynomial for f about x = 1, is given by

T2(x) = f(1) + f ′(1)(x− 1) +
1

2
f ′′(1)(x− 1)2 (60)

= −1 + 2(x− 1)− 9

2
(x− 1)2. (61)

C. The Lagrange Remainder for T2(x) is

R2(x) =
1

6
f ′′′(ξ)(x− 1)3, (62)

the number ξ lying somewhere between x and 1. We have been given that
∣∣f ′′′(x)

∣∣ ≤ 60
for all x lying in [1, 1.1], so we may conclude that∣∣f(1.1)− T2(1.1)

∣∣ =
∣∣R2(1.1)

∣∣ (63)

≤ 1

6
· 60 ·

∣∣1.1− 1
∣∣3 = 10 · 1

1000
=

1

100
. (64)

D. Euler’s method for the differential equation y′ = F (x, y) with intial condition y0 = −1,
starting at x = 1 with steps of size h, takes x0 = 1 and iterates the recursion

xk+1 = xk + h; (65)

yk+1 = yk + F (xk, yk)h; (66)
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for k = 0, 1, 2, . . .. We are to approximate the solution of y = (3 − x)y2; y(1) = −1 at
x = 1.4 with two steps of equal size, so we will take h = 0.2. We obtain

x1 = 1 + 0.2 = 1.2; (67)

y1 = −1 + (3− 1)(−1)2(0.2) = −0.6; (68)

x2 = 1.2 + 0.2 = 1.4; (69)

y2 = −0.6 + (3− 1.2)(−0.6)2(0.2) = −0.4704. (70)

6. We consider the series

∞∑
n=1

(x− 4)n+1

(n+ 1)3n
.

A. We have

lim
n→∞

∣∣∣∣ (x− 4)n+2

(n+ 2)3n+1
· (n+ 1)3n

(x− 4)n+1

∣∣∣∣ =
1

3
|x− 4| lim

n→∞

(n+ 1)

(n+ 2)
(71)

=
1

3
|x− 4| lim

n→∞

1 + 1
n

1 + 2
n

(72)

=
1

3
|x− 4|. (73)

This is less than one when |x − 4| < 3 or, equivalently, when 1 < x < 7. By the
Ratio Test, this is the interior of the interval of convergence. When x = 7 the series
becomes

∞∑
n=1

(7− 4)n+1

(n+ 1)3n
= 3

∞∑
n=1

1

n+ 1
, (74)

which is a divergent harmonic series. When x = 1 the series becomes

∞∑
n=1

(1− 4)n+1

(n+ 1)3n
= 3

∞∑
n=1

(−1)n+1

n+ 1
, (75)

which is a convergent alternating harmonic series. We conclude that the interval of
convergence for this series is 1 < x ≤ 7.

B. If f(x) =

∞∑
n=1

(x− 4)n+1

(n+ 1)3n
throughout the series’ interval of convergence, we can obtain

the series for f ′ by term-by-term differentiation. Thus,

f(x) =

∞∑
n=1

d

dx

[
(x− 4)n+1

(n+ 1)3n

]
(76)

=

∞∑
n=1

(x− 4)n

3n
=

∞∑
n=1

(
x− 4

3

)n
(77)

throughout the interior of the interval of convergence. The first three non-zero terms of

this series are
x− 4

3
,

(x− 4)2

32
, and

(x− 4)3

33
, and the general tern is

(x− 4)n

3n
.
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C. We know that when the geometric series with common ratio r converges, we can write

∞∑
n=1

rn =
r

1− r
. (78)

Consequently, when x lies inside the interval (1, 7), we have

f ′(x) =

∞∑
n=1

(x− 4)n

3n
(79)

=
x− 4

3
· 1(

1− x− 4

3

) (80)

=
x− 4

3− (x− 4)
=
x− 4

7− x
. (81)

D. As we have seen above, the interior of the interval of convergence for f , and therefore
for f ′, is (1, 7). Because the number 8 lies outside the closure of this interval, the Taylor
series for f ′ diverges at x = 8.

Alternately, we can see that the series diverges when x = 8 because it becomes

∞∑
n=1

(
4

3

)n
,

which is a divergent geometric series.
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