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We use the symbol “~” to mean “is approximately equal to” throughout this document.
1. We are given C(¢t) = 7.6 arctan 0.2¢.

A. The average number of acres affected by the invasive species from t =0 to t =4 is

L 40(3) ds = w6 /4 arctan 0.2s ds (1)
4-0 Jo 4 '

4

= 1.9 [sarctan 0.2s — 2.5In(s* + 25)] | ~ 2.778 (2)
0

B. The instantaneous rate of change of C is

38

!
)= ——
() 25 + 2’

while C, the average rate of change of C over the time interval 0 < t < 4, is

ol C(4) —C(0) 7.6arctan0.8 — 7.6 arctan0 (4)

- 4-0 4-0 '

38 Cc(4)—-C(0

So we must solve the equation % = ( i —0 ©) for t. We have

38  C(4)-0(0) (5)
25412 4-0
C(4)(25 + 1?) = 152; (6)
152 152
= 5= " 95~ 4.641 ;

C(4) 7.6 arctan 0.8 b 64100553; (7)
t ~ v4.64100553 ~ 2.154 weeks. (8)



C.

D.

The end behavior of the rate of change in the number of acres affected by the species is
given by

i 00 = Jim 52 ®
-2
= 25??2 1 (10)
We seek the maximum value of
A(t) =C(t) — 0.1/: In(s) ds (11)
in the interval 4 <t < 36. To this end, we note that
Al(t) = 253ft2 —0.1lnt. (12)

Machine calculation shows that the only critical point for A (i.e., solution of A’(¢) =0
in the interval 4 <t < 36 is at t ~ 11.44169985. We find that

A(4) ~ 5.12803 (13)
A(11.4416998) ~ 7.31698 (14)
A(36) ~ 1.74306 (15)

Thus, we conclude that, for 4 <t < 36, A(t) reaches its maximum value of about 7.317
acres at the time ¢t ~ 11.442 weeks.



2. We are given r = 2sin?6 for 0 < 0 < 7.

A. The rate of change of r with respect to @ is

dr d . 9
0= a0 (2sin*0) (16)
= 4sinf cosd. (17)

Consequently, the rate of change of r with respect to 8 when 6 = 1.3 is

4-(sin1.3) - (cos1.3) ~ 1.031. (18)
B. We begin by finding the intersection points of the two curves; for this, we solve the
equation
. 9 1

2sin“ 0 = X (19)
sin? @ = L (20)

47

. 1
sinf = i§; (21)
(22)

The only solutions, €, for which 0 < § < 7, are § = % and 0 = 5% Consequently, the

desired area between the two curves is

1 571'/6 1 1 57\'/6 r 1
5 //6 {(2 sin? 9)2 — 4} do = 5 //6 (1 — cos260)? — 4] do (23)
1 57/6 3
= = — 20820 + cos? 20| df (24)
2 /56 14
1 [P/ 73 11
:2/7T/6 -4—200829+<2+2COS49>] do  (25)
1 57\'/6 I 1
=3 //6 Z —2cos20 + 3 COS49:| de (26)
1(7/3 5
= <\8[ + g) ~ 2.067 (27)

C.Ifo<06< g, the distance from the y-axis to the point (r,8), which is the maximum

value of z(0) = r(f) cosf, must be either at one of the endpoints or at a critical point
for z(0). But the endpoints of this interval correspond to points on the y axis, where
x(0) = 0, so we can discard these points. The critical points are at zeros of the function
2’ () = 4sin @ cos? § — 2sin® §. These zeros are to be found where sin@ = 0 and where

4cos? § — 2sin’® § = 0; (28)



or, equivalently, where

4 —6sin® 0 = 0. (29)
This can be rewritten as
2
sin? @ = 3 (30)
whence
sinf = + % (31)

We are interested only in first quadrant values for €, so we can discard the negative

2
solution; and we find that our only critical point is at § = 6y = arcsin (\/;> We

2
6y = arcsin <\/§> ~ 0.955 (32)

is the value we want. The maximum value for z(0) when 0 < § < g is thus

conclude that

2(6) = 47‘/3 ~ 0.770. (33)

The distance from the origin to the point with polar coordinates (r(6),0) is precisely
r(6). Treating 0 as a function of time ¢, we have

d d o .
8] = — [2sin® 6(0)] (34)

= 40(t)sin0(t) cos 0(t). (35)
We have been given a certain time ¢ = ¢; when 6(¢1) = 1.3 and é(tl) = 15. Thus, at the

time t = t;, the rate, 7, at which the particle’s distance from the origin changes with
respect to time is given by

7 =40(t,) sin0(t1) cos O(t1) (36)
=60-sin1.3 - cos1.3 ~ 15.465. (37)



3.

A. Approximating R’'(1) using the average rate of change of R over the interval 0 < ¢ < 2

gives
R(2) - R(0)
R(1)~ ——rr?t 38
1)~ HO (39)
100 —
= M = 5 words per minute per minute. (39)

. The function R is given differentiable, and differentiable functions are continuous, so

R is continuous. We see from the table that R(8) = 150 and R(10) = 162. Also,
150 < 155 < 162. By the Intermediate Value Theorem for Continuous Functions, there
must be a number ¢ such that 0 < 8 < ¢ < 10 and R(c) = 155.

10
C. We can approximate / R(t) dt by
0

/ " Ryt ~ SIR(0) + )2~ 0) + 5[R(2) + RE)](8 —2) + S[R(E) + RO0)](10 - 8)
0

(40)
1 1 1
~ 5[90—1—100] -2+§[100+150] -6+§[150+162] -2 (41)
~ 190 4 3 - 250 4 312 = 1252 (42)
D. Based on the model given, by the end of ten minutes, the teacher has read

10 10 3
W(t)dt = / (1oo+ 8t — t2) dt (43)

0 0 10

1 10

= 100t + 4t* — —¢ 44
o4 5] | w0
= 1300 words. (45)



4.

x

A If g(z) = / g(t)dt, then, by the Fundamental Theorem of Calculus, ¢'(z) = f(z).

Combining this fact with what we read from the picture given, we see that ¢'(8) =

£(8) =1.

. The graph given for the function f is also, as we have seen above, the graph of ¢'.

Inflection points for g are to be found at points where ¢’ changes either from increasing
to decreasing or from decreasing to increasing!. But from the picture and what is given,
we see that ¢ is decreasing on each of the intervals [—6, —3] and |3, 6], while it is increasing
on each of the intervals | — 3, 3] and [6, 12]. From these observations, we conclude that g
has points of inflection at z = —3, at x = 3 and at x = 6.

. From the definition and the graph given in the statement of the problem, we have

12 = [ fo)dt = %(12 _6)-3=0, (46)

which is the area of a triangle of base 6 and height 3. On the other hand

1 9

0
9(0) = /6 L (47)

which is the negative of the area of a semicircle of radius 3.

. ¢ attains its absolute minimum on the interval [—6,12] at either a critical point or an

endpoint. The critical points are those points, z, of (—6,12) where ¢'(z) = f(z) =0, or
x =0 and z = 6. Summing signed areas of appropriate semicircles and triangles, we see
that

9(76) = Oa (48)
9(0) = —om (49)
9(6)=0 (50)

9(12) =9 (51)

Consequently, the absolute minimum value of g(z) for = € [—6,12] is found at x = 0 and

9
is g(0) = —5™

1Some authors impose a requirement that the second derivative exist at an inflection point. We are ignoring such

a requirement. This could pose a problem for the readers.



5. We are given that the function f is the solution the initial value problem

y'=(B- o)y
y(1) = —1.

(52)
(53)

A. The function f is a solution of the differential equation. Thus, f'(z) = (3 — z)[f(2)]?,

and we must have

F() = - {3~ )T @) (54)
= 2/(@)f (23 - 2) - [f(@) (5)
=23~ @) - @) (56)
We have

£y =1 657)
F) = @E-1)(-12=2 (58)

whence we conclude that
£(1) = 26 = PP - [FOF = -9. (59)

. Ty(x), the second degree Taylor polynomial for f about z = 1, is given by

Te) = (1) + f ()~ 1) + 54" () 1) (60)
:—1—|-2(g;—1)—g(x—1)2. (61)

. The Lagrange Remainder for Tx(x) is

Ro(a) = g "(€)(x ~ 1), (62)

the number ¢ lying somewhere between 2 and 1. We have been given that | f"(z)| < 60
for all z lying in [1,1.1], so we may conclude that

|f(1.1) = To(1.1)| = |Ro(1.1)] (63)
1 1

0 (64)

1 3
<--60-|1.1-1|" =10- = .
-6 60 ’ | 0 1000 100

. Euler’s method for the differential equation y' = F(z,y) with intial condition yo = —1,
starting at x = 1 with steps of size h, takes g = 1 and iterates the recursion

Tpy1 = x) + By (65)
Ykt1 = Uk + F(r, yi)h; (66)



for k = 0,1,2,.... We are to approximate the solution of y = (3 — z)y?; y(1) =

x = 1.4 with two steps of equal size, so we will take h = 0.2. We obtain

r1=1+02=12
Y1 = —1+(3—1)(=1)2(0.2) = —0.6;

Ty =12+0.2=14;

Yo = —0.6 + (3 — 1.2)(—0.6)(0.2) = —0.4704.

4 n+1
6. We consider the series Z n—|—1))3"
A. We have
— 4)nt2 1)3" 1 1
lim (z=4) Ant 13 = —|z — 4| lim (n+1)
n—oo | (n 4 2)37+1  (z —4)n+! 3 n—oo (N + 2)
1 141
= —|z — 4] lim +g
1
= §|33 — 4

(71)
(72)

(73)

This is less than one when |z — 4| < 3 or, equivalently, when 1 < = < 7. By the
Ratio Test, this is the interior of the interval of convergence. When x = 7 the series

becomes

4 n+1

— (7— — 1
z:: (n +1)3n :3;n+1

which is a divergent harmonic series. When = = 1 the series becomes

n+1 oo n+1

Z n+13” -

n=1 n=1

M

b

n+1

(74)

(75)

which is a convergent alternating harmonic series. We conclude that the interval of

convergence for this seriesis 1 <z < 7.

St —4 n+1
B. If f(z) = Z =4 throughout the series’ interval of convergence, we can obtain

— (n+1)3"
the series for f’ by term-by-term differentiation. Thus,

1= [

n=1
(A -4\
)

(76)

(77)

throughout the interior of the interval of convergence. The first three non-zero terms of

x—4)3
33

(z —4)"
377,

x—4 (z—4)>2
this series are , ( )

5z and (

, and the general tern is



C. We know that when the geometric series with common ratio r converges, we can write

o0 N r
dor =T (78)
n=1

Consequently, when z lies inside the interval (1,7), we have

fra =y T (79)

1
4

n

x 1

w
7 N\
[
|

K

Wi |
S
~_

(81)

D. As we have seen above, the interior of the interval of convergence for f, and therefore
for f’,is (1,7). Because the number 8 lies outside the closure of this interval, the Taylor
series for f' diverges at x = 8.

o0 n
4
Alternately, we can see that the series diverges when = 8 because it becomes E <3) ,

n=1
which is a divergent geometric series.



