The von Richter Reaction: A Case History

In 1871, von Richter reported the following observations:

$$NO_2$$
 KCN $EtOH/H_2O$ $COOH + KNO_2$ reflux

$$Z - \underbrace{\hspace{1cm} \begin{array}{c} KCN \\ EtOH/H_2O \\ reflux \end{array}} - COOH + "acidic tars" + KNO_2$$

5%-50% yields

Based on the above:

- 1. Direct displacement of the nitro group is eliminated from consideration.
- 2. A benzyne intermediate is ruled out. In the case of para-substituted nitrobenzenes, benzyne intermediates would give both meta- and para-substituted benzoic acids.

von Richter Reaction: Bunnett Mechanism (1954)

In 1954, Bunnett et al. proposed the following mechanism to account for the known facts pertaining to the von Richter reaction:

Z-NO₂ + CN Z-NO₂
H-OH

$$Z$$
-NO₂ + CN Z-NO₂
 Z -NO₂
 Z -NO₃
 Z -NO₄
 Z -NO₂
 Z -NO₄
 Z -NO₂
 Z -NO₄
 Z -NO₄
 Z -NO₅
 Z -NO₆
 Z -NO₇
 Z -N

von Richter Reaction: Bunnett Observations (1956)

VON RICHTER REACTION: REVISED BUNNETT MECHANISM

Rosenblum Observations (1960)

Observation I: Instead of nitrite, molecular nitrogen was a by-product of the von Richter reaction. Apparently, in the 1871 von Richter paper, nitrite had never been demonstrated to be a by-product. It had been deduced based on stoichiometry considerations.

In the revised Bunnett mechanism, ammonia and nitrite are stipulated by-products of the von Richter reaction. Ammonia and nitrite can react to form ammonium nitrite which, upon heating, decomposes to give molecular nitrogen and water.

Upon addition of ${}^{15}NH_3$ to an on-going von Richter reaction, the only molecular nitrogen obtained contained no nitrogen-15! If the revised Bunnett mechanism were correct, the added ${}^{15}NH_3$ and the expelled ${}^{16}N = {}^{14}N$.

Observation II:

Point of Interest:

However:

CI
$$\longrightarrow$$
 NO₂ $\xrightarrow{\text{KCN}}$ CI \longrightarrow COOH + $^{15}\text{N} \stackrel{14}{\equiv} \text{N}$ reflux

Conclusion: One nitrogen atom must come from the nitro group, and the second must come from the cyano group **intramolecularly**!

Accepted Mechanism for the von Richter Reaction

Supporting Evidence for the Rosenblum Mechanism

Ullman & Bartkus (1962): NH Pb(OAc)₄ + N_2 EtOH/H₂O reflux hydrazide diazene Ibne-Rasa & Koubek (1963): NH_2 RCO₃H $+ N_2$ EtOH/H2O reflux $-NH_2$ C-NH₂ o-nitrosobenzamide