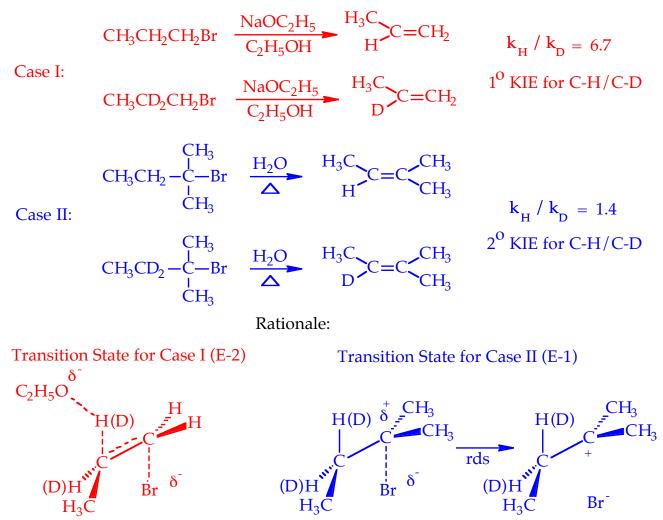
Testing a Mechanism: Kinetic Isotope Effects


- Primary Isotope Effect rate change due to isotopic substitution at a site of bond breaking or bond making in the rate determining step of a mechanism.
- ★ Secondary Isotope Effect rate change due to isotopic substitution at other than a site of bond breaking or bond making in the rate determining step of a mechanism.

Primary Kinetic Isotope Effect: Typical Values

Nuclide	k _{light} k _{heavy}	(at 25 ⁰ C)
C-H/C-D	6 - 8	
<mark>С-Н/С-Т</mark>	15 - 16	
¹² C/ ¹³ C	1.04	
¹² C/ ¹⁴ C	1.07	
14 15 N/N	1.03	
16 18 O/ O	1.02	
^{32 34} S/S	1.01	
³⁵ 37 Cl/Cl	1.01	

EXAMPLES OF KINETIC ISOTOPE EFFECTS

Consider the following dehydrohalogenation reactions:

More Examples of Kinetic Isotope Effects

Consider the following decomposition of an azo compound:

$$R - N = N - R \longrightarrow R - N \equiv N - R \longrightarrow 2 R' + N_2 \qquad \frac{k_{14}}{N} / \frac{k_{15}}{N} = 1.02$$

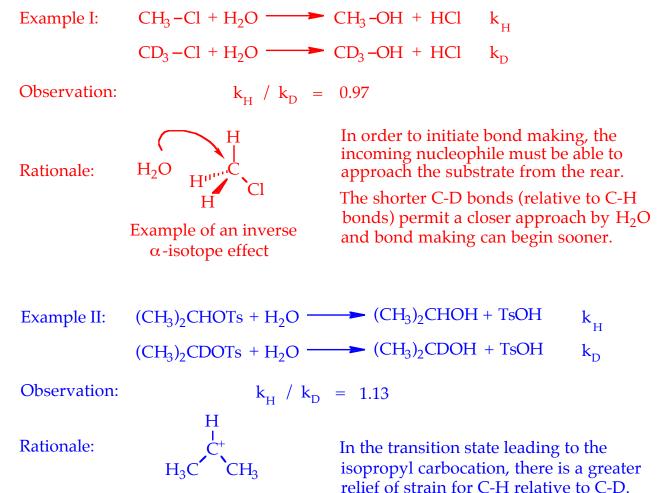
1

Rationale: Although the above rate enhancement is small in absolute terms, for the nitrogen nuclides indicated, the enhancement is indicative of a primary kinetic isotope effect.

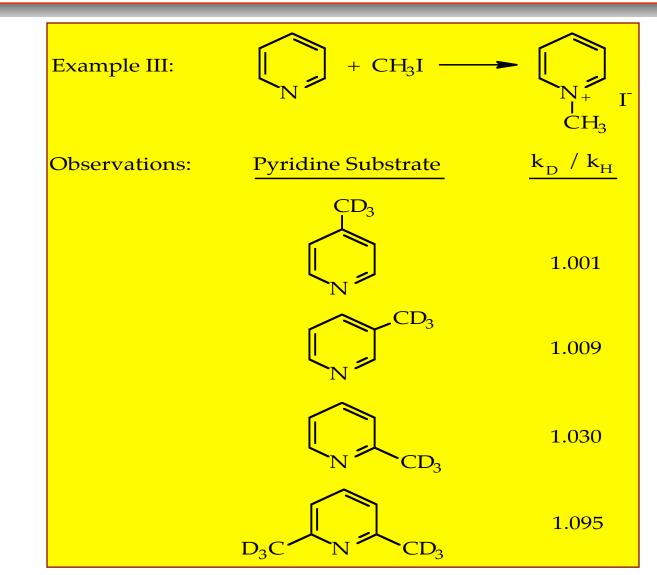
Consider the nitration of benzene shown below:

$$C_{6}H_{6} \xrightarrow{HNO_{3}/H_{2}SO_{4}} C_{6}H_{5}NO_{2}$$
rate_H
$$C_{6}D_{6} \xrightarrow{HNO_{3}/H_{2}SO_{4}} C_{6}D_{5}NO_{2}$$
rate_D

Observation: $rate_{H} \cong rate_{D}$


Conclusion to be drawn: A C-H (C-D) bond is not being broken in the rate determining step of electrophilic aromatic nitration.

Secondary Kinetic Isotope Effects


Differences in steric demand
Hyperconjugative effects
Differences in inductive effect

Examples of Secondary Kinetic Isotope Effects

Differences in Steric demand

Secondary Kinetic Isotope Effects

Secondary Kinetic Isotope Effects

Hyperconjugative effects

Example:

β-Isotope effect

$$(CH_3)_3C - Cl + H_2O \longrightarrow (CH_3)_3C - OH + HCl \qquad k_H$$
$$(CD_3)_3C - Cl + H_2O \longrightarrow (CD_3)_3C - OH + HCl \qquad k_D$$

Observation:

$$k_{\rm H} / k_{\rm D} = 1.21$$

Rationale:

Whereas a C-D bond is slightly stronger than a C-H bond, hyperconjugation as shown above is not quite as effective at stabilizing the carbocationic intermediate for the reaction using deuterated reactant relative to that using unlabeled reactant.

Another view: Whereas C-H bonds at a given temperature are slightly longer than corresponding C-D bonds, formation of a carbocationic intermediate provides more relief from steric strain for unlabeled reactant compared with that experienced by deuterated reactant.

SECONDARY KINETIC ISOTOPE EFFECTS

Inductive effects

Example: $CH_3COOH \implies CH_3COO^- + H^+$ K_H $CD_3COOH \implies CD_3COO^- + H^+$ K_D Observation: $K_H / K_D = 1.06$

Rationale: Hydrogen is slightly more electronegative than deuterium.

Related Question: Which one of the following is more basic?

$$\bigcirc$$
 -CH₂NH₂ vs. \bigcirc -CD₂NH₂