| General Chemistry | I |
|-------------------|---|
| Dr. M. J. Wieder  |   |
| Examination #3    |   |

| Name |  |
|------|--|
|      |  |

| (20) | 1. | Balance the following chemical equations by using the lowest set |
|------|----|------------------------------------------------------------------|
|      |    | of whole number coefficients:                                    |

a) 
$$Mg_3B_2 + H_2O \longrightarrow Mg(OH)_2 + B_2H_6$$

b) 
$$\_$$
 HSbCl<sub>4</sub> +  $\_$  H<sub>2</sub>S  $\longrightarrow$   $\_$  Sb<sub>2</sub>S<sub>3</sub> +  $\_$  HCl

c) 
$$V_2O_5 + Cl_2 + C$$
 VOCl<sub>3</sub> + COCl<sub>2</sub>

d) 
$$\underline{\hspace{1cm}} H_5IO_6 \longrightarrow \underline{\hspace{1cm}} I_2O_5 + \underline{\hspace{1cm}} H_2O + \underline{\hspace{1cm}} O_2$$

e) \_\_\_\_
$$I_2O_5$$
 + \_\_\_ $CO$  \_\_\_\_\_ \_\_ $I_2$  + \_\_\_ $CO_2$ 

Balance the following nuclear equations by supplying the correct (20)2. missing species:

a) 
$$^{16}O + 1_{---}$$
  $^{---}$   $^{13}N + 1 \alpha$ -particle

b) 
$$252Cf + 11B \longrightarrow 257Lr + 6$$

c) 59Co + 1 neutron 
$$\longrightarrow$$
 1\_\_\_\_ + 1 alpha particle

d) 
$$246$$
Cm +  $13$ C  $\longrightarrow$  + 5 neutrons

Which of the following result(s) in a decrease in nuclear charge? **(4)** 3.

i. α-decay ii. β-decay iii. positron emission iv. electron capture

- a) only iv b) i & ii
- c) i & iii
- d) ii & iv
- e) i, iii, & iv

A nucleus that has too high a n/p ratio can gain stability via: **(4)** 4.

> c) α-decay b) electron capture a) β-decay e) proton emission d) positron emission

When a nitrogen atom with 6 neutrons undergoes positron (4) 5. emission, \_\_\_ is formed.

- a) <sup>14</sup>N
- b) <sup>14</sup>C c) <sup>13</sup>C
- d) <sup>12</sup>C
  - e) 13N

| (4) | 4) 6. Which one of the following chemical equations does represent an oxidation-reduction reaction? |                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|     |                                                                                                     | a) 1 Fe <sub>2</sub> O <sub>3</sub> + 3 CO                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| (4) | 7.                                                                                                  | When 12.4 g of phosphorus and 40.0 g of sulfur react, all of the phosphorus is consumed, 44.4 g of P <sub>2</sub> S <sub>5</sub> are formed, and some unreacted sulfur remains. The mass of unreacted sulfur                                                                                                                |  |  |  |  |  |
|     |                                                                                                     | a) 8.0 g b) 12.4 g c) 27.6 g d) 32.0 g                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|     |                                                                                                     | e) Impossible to determine from the data provided                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| (4) | 8.                                                                                                  | Consider the following balanced chemical equation:                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|     |                                                                                                     | $4 \text{ Ag} + 2 \text{ H}_2\text{S} + 1 \text{ O}_2 \longrightarrow 2 \text{ Ag}_2\text{S} + 2 \text{ H}_2\text{O}$                                                                                                                                                                                                       |  |  |  |  |  |
|     |                                                                                                     | If 2.0 moles of Ag react with excess H <sub>2</sub> S and O <sub>2</sub> to give 0.7 moles of Ag <sub>2</sub> S, which one of the following statements is correct?                                                                                                                                                          |  |  |  |  |  |
|     |                                                                                                     | <ul> <li>a) The percent yield is 100%</li> <li>b) The percent yield is 70%</li> <li>c) The percent yield is 35%</li> <li>d) The theoretical yield is 2.0 moles of Ag<sub>2</sub>S</li> <li>e) The theoretical yield of the reaction depends upon how large an excess of H<sub>2</sub>S and O<sub>2</sub> is used</li> </ul> |  |  |  |  |  |
| (4) | 9.                                                                                                  | Consider the following balanced chemical equation:                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|     |                                                                                                     | $1 \text{ CaCN}_2 + 3 \text{ H}_2\text{O} \longrightarrow 1 \text{ CaCO}_3 + 2 \text{ NH}_3$                                                                                                                                                                                                                                |  |  |  |  |  |
|     |                                                                                                     | If 1.0 mole of $CaCN_2$ and 1.0 mole of $H_2O$ are allowed to react, the maximum number of moles of $NH_3$ produced will be:                                                                                                                                                                                                |  |  |  |  |  |
|     |                                                                                                     | a) less than 1.0 mole b) 1.0 mole                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|     |                                                                                                     | c) 2.0 moles d) 3.0 moles                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|     |                                                                                                     | e) None of the above choices is correct                                                                                                                                                                                                                                                                                     |  |  |  |  |  |

| (4)                                                                                                              | 10.                                                                                                          | Balance the following chemical equation using the lowest set of whole number coefficients:                                                                                                                                                                         |                              |                                    |                                      |                   |                  |         |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------|--------------------------------------|-------------------|------------------|---------|
|                                                                                                                  |                                                                                                              |                                                                                                                                                                                                                                                                    | _NH <sub>3</sub> +           | O <sub>2</sub> -                   |                                      | NO <sub>2</sub> + | H <sub>2</sub> O |         |
|                                                                                                                  |                                                                                                              | For every mole of NH <sub>3</sub> that reacts, moles of O <sub>2</sub> are required.                                                                                                                                                                               |                              |                                    |                                      |                   |                  |         |
|                                                                                                                  |                                                                                                              | a) 0.57                                                                                                                                                                                                                                                            | b) 1.25                      | <b>c)</b> 1                        | 1.33                                 | <b>d</b> ) 1.75   | e) 2.            | 67      |
| (4)                                                                                                              | 11.                                                                                                          | Conside                                                                                                                                                                                                                                                            | the follow                   | ring balar                         | nced che                             | mical equa        | tion:            |         |
|                                                                                                                  | $6 \text{ NH}_3(g) + 8 \text{ O}_3(g) \longrightarrow 3 \text{ N}_2\text{O}_5(g) + 9 \text{ H}_2\text{O}(g)$ |                                                                                                                                                                                                                                                                    |                              |                                    |                                      |                   |                  |         |
| If the reaction of 2.0 moles of NH <sub>3</sub> (g) and 2.5 moles of O <sub>3</sub> (g run with 100% efficiency: |                                                                                                              |                                                                                                                                                                                                                                                                    |                              |                                    |                                      |                   |                  | g(g) is |
|                                                                                                                  |                                                                                                              | a)<br>b)<br>c)<br>d)<br>e)                                                                                                                                                                                                                                         | all of t<br>1.0 mo<br>60.0 g | he O3(g)<br>le of N2C<br>of H2O(g) | will be co<br>5(g) will<br>will be p | be produce        | ed               |         |
| (4)                                                                                                              | 12.                                                                                                          | Conside                                                                                                                                                                                                                                                            | the follow                   | ing balar                          | ced che                              | mical equa        | tion:            |         |
|                                                                                                                  |                                                                                                              | 2 Al(OH) <sub>3</sub> + 3 H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                           |                              |                                    |                                      |                   |                  |         |
|                                                                                                                  |                                                                                                              | How many ml of 6.0M H <sub>2</sub> SO <sub>4</sub> are required to react completely with 390.0 g of Al(OH) <sub>3</sub> ?                                                                                                                                          |                              |                                    |                                      |                   |                  |         |
|                                                                                                                  |                                                                                                              | a) 2,340 1                                                                                                                                                                                                                                                         | ml b) 1,92                   | 3 ml c) 1                          | 1,750 ml                             | <b>d)</b> 1,457 1 | ml e) 1,         | 250 ml  |
| (4)                                                                                                              | 13.                                                                                                          | Ethane, C <sub>2</sub> H <sub>6</sub> , burns in the presence of O <sub>2</sub> to produce CO <sub>2</sub> and H <sub>2</sub> O. If 8.00 grams of O <sub>2</sub> are consumed, how many <b>moles</b> of CO <sub>2</sub> will be obtained (assume 100% efficiency)? |                              |                                    |                                      |                   |                  |         |
|                                                                                                                  |                                                                                                              | a) 0.143                                                                                                                                                                                                                                                           | b) 0.286                     | 6 c)(                              | 0.438                                | d) 1.00           | e) 4.            | 00      |
| (4)                                                                                                              | 14.                                                                                                          | Consider                                                                                                                                                                                                                                                           | the follow                   | ing balar                          | ced che                              | mical equa        | tion:            |         |
|                                                                                                                  |                                                                                                              | 10                                                                                                                                                                                                                                                                 | QCl + 1Ag                    | NO <sub>3</sub> —                  | → 1 Q                                | $NO_3 + 1A$       | gCl v            |         |
|                                                                                                                  |                                                                                                              | 19.95 g of QCl is dissolved in water. If 357 ml of 0.750 M AgNO <sub>3</sub> is required to precipitate all the chloride in solution, what is the identity of element Q?                                                                                           |                              |                                    |                                      |                   |                  |         |
|                                                                                                                  |                                                                                                              | a) Li                                                                                                                                                                                                                                                              | b)                           | Na c)                              | K                                    | d) Ri             | e)               | Cs      |

----

(6) 15. Calcium carbonate, a major constituent of limestone, undergoes thermal decomposition as shown below:

A 3.00 gram sample of limestone liberates 500.0 ml of CO<sub>2</sub> at 227°C and 2.0 atmospheres. Determine the percent, by mass, of CaCO<sub>3</sub> in the limestone sample.

Assume that any other constituents of limestone are chemically inert. Show all work in the space provided below.

(6) 16. Consider the following balanced chemical equation:

If 150.0 g of CS<sub>2</sub> and 100.0 g of Cl<sub>2</sub> are allowed to react, what mass (in grams) of excess reagent will remain at the conclusion of the reaction? Show all work in the space provided below.