| General Chemistry | | |-------------------|--| | Dr. M. J. Wieder | | | Examination #4 | | | Name | | | | |------|--|--|--| | (2) | 4 | | | 1 | , | 1 | 1. 1 | | | | | |-----|----|-------------|--|-------------------------|--------------------------------|-----------------------------|---|---------------------------|------------------|---------|---------------------| | (2) | 1. | radi
sam | As one proceeds from ultraviolet radiation to microwave radiation, the frequency (increases, decreases, remains the same) and the wavelength (increases, decreases, remains the same). | | | | | | | | | | (3) | 2. | A re | presen | tative | elemen | nt that | is disti | nctly 1 | netallio | : is: | | | | | a) | Si | b) | Bi | c) | Ge | d) | As | e) | Sb | | (4) | 3. | An a | atom of | f arsen | ic (At. | no. 33 |) has: | | | | | | | | | a)
b)
c)
d)
e) | 10 el
6 ele
14 el | lectrons
ectrons
lectron | s in 4d
in 3p
s in 4f | atomic
l atomic
atomic
atomic
e choic | orbit
orbita
orbita | als
ls
ıls | | | | (4) | 4. | How | z many | unpai | ired ele | ectrons | s are th | ere in | a fluori | de (F- | ¹) ion? | | | | a) | 0 | b) | 1 | c) | 2 | d) | 3 | e) | 6 | | (4) | 5. | | The highest first ionization energy of the following elements is that for: | | | | | | | | | | | | a) | Li | b) | Se | c) | Mg | d) | Cl | e) | Ne | | (4) | 6. | | | | r of ele
t. no. 4 | | in all t | he <u>d-a</u> | tomic o | rbitals | s of an | | | | a) | 14 | b) | 17 | c) | 19 | d) | 20 | e) | 47 | | (4) | 7. | | | | el tran
wavel | | | produ | ice an (| emissi | on line | | | | a) 7s | to 4d | b) 3d | l to 4f | c) 3p | to 1s | d) 1s | s to 4s | e) 5f | to 6d | | (4) | 8. | | ⁺³ ion
guratio | would
on: | have t | he toll | owing | groun | d state | electro | on | |-----|-----|---|-----------------------------------|--------------------------|---------------------|---------------------------------|--------------------|-----------------|-----------------|---------------------|---------------------------------| | | | a) [Ar | ·]4s ² 3d ⁸ | ³ b)[| Ar]3d ¹⁰ | 0 c)[| Ar]3d ⁸ | d) [| [Ar] | e) [Kr] | | | (4) | 9. | | | s that c
umber: | | a d-ato | mic or | bital n | nust h | ave the | 9 | | | | a) n = | = 2 | b) m[= | - +2 | $\mathbf{c)} \; \mathbf{l} = 2$ | 2 d |) n = 3 | e) | $\mathbf{m_s} = +$ | 1/2 | | (4) | 10. | | | of the for | | ng ato | ms has | a vale | ence el | ectron | | | | | a) | Ti | b) | Si | c) | Ca | d) | Sn | e) | Ge | | (4) | 11. | The t | otal nu | ımber (| of atom | ic orbi | tals po | ssible | for n = | 2 is: | | | | | a) | 4 | b) | 9 | c) | 10 | d) | 16 | e) | 32 | | (4) | 12. | | n X for
ent X i | ms X ⁺²
s: | whose | e electr | on con | figura | tion is | [Xe]6s ² | ² 5d ¹⁰ . | | | | a) | Rn | b) | Po | c) | Pb | d) | Hg | e) | Pt | | (4) | 13. | | sition e
from: | elemen | ts are t | those v | vhose ' | valenc | e electi | rons m | ay | | | | a) atomic orbitals that differ in both their n and m₁ values b) atomic orbitals that differ in their m₁ values but not their | | | | | | | | | | | | | c) | n val | s-atom | ic orbi
only | tals
d- and | d)
f-atom | only
ic orbi | d-aton
itals | uc orb | itals | | (4) | 14. | | | metal Z
netal Z | | | f Z+3 h | as five | unpai | ired el | ectrons, | | | | a) | Со | b) | Mn | c) | Cr | d) | Fe | e) | Ni | | (4) | 15. | Whic | ch one | of the | follow | ing ior | ns is di | amagr | netic? | | | | | | a) Co | y+2 | b) Co | +3 | c) Cr | -3 | d) Cu | 1+2 | e) Zı | 1 ⁺² | | (3) | 16. | Erbiu | um (At | t. no. 6 | 8) is a | n exam | ple of | a(n) | | eleme | ent. | | | | a) tra | nsition | n metal | b) la | nthanio | de c) | actinid | le d) | metallo | oid | | (3) | 17. | If an oxygen atom gains | two electro | ns, the resulting | g species is: | |-----|-----|--|--|---------------------|---------------------| | | | a) a cation isoelectron b) an anion isoelectron c) smaller than an ox d) larger than an oxy e) None of the above | onic with a
cygen atom
gen atom. | n argon atom.
I. | | | (4) | 18. | Which one of the followi | ng species | has the largest | radius? | | | | a) Sc ⁺³ b) P ⁻³ | c) Ar ⁰ | d) K ⁺¹ | e) Cl ⁻¹ | | (3) | 19. | "An individual atomic or
electrons but, to do so, th
a statement of the: | | | | | | | a) Aufbau principle | b) | Bohr theory | of the atom | | | | c) Heise | enberg Unc | ertainty princip | ole | | | | d) Hund's rule | e) | Pauli Exclu | sion principle | | (4) | 20. | A set of quantum number last) electron in a cesium | | _ | e 55th (the | | | | n | 1 m ₁ | m_s | | | | | a) 5 b) 6 c) 6 d) 6 e) None of the | 0 0
0 0
1 1
1 0
above cho | | | | 4) | 21. | Which one of the follow is not permissible? | ing combi | nations of quar | itum numbers | | | | is <u>not</u> permissible: | n 1 | m_l m_s | ; | | | | a)
b)
c)
d)
e) | 3 1
3 0
3 1
3 1
3 2 | - | 2
2
2 | - | (3) | 22. | | ons represents | ne of the following atomic electron its a ground state, excited state, or an | | | | |-----|-----|----|-------------------------------------|--|--|--|--| | | | a) | [Kr]5s ² 5d ¹ | | | | | | a) | [Kr]5s ² 5d ¹ | 4 | |----|--------------------------------------|---| | b) | [Ar]4s ² 3f ¹⁰ | | | c) | [Kr]5s ¹ 4d ⁵ | | (19) 23. Complete the following abbreviated Periodic table of elements using the <u>fictitious</u> elements described below: - a) Elements Er, Y, G, and S, and Me comprise the group of inert gases and are listed in order of decreasing atomic size. - b) Elements It, V and In are halogens. Element It is more electronegative than element V, but It is less electronegative than element In. - c) Elements Fo, Ee, and Sc are alkaline earth metals. The atomic weight of Sc is greater than that of Ee, but is lower than that of Fo. - d) Element Fa has a 1s1 electronic configuration. - e) Elements Is, Ob, Fl, and I are alkali metals and are listed in order of increasing ionization energy. - f) Elements T, Ur, and Re are transition metals and are listed in order of increasing metallic character.