The student should be able to:

- 1. Identify the four variables used to describe a gas sample.
- 2. Define the terms torr and atmosphere.
- 3. Convert from units of torr to units of atmosphere and vice versa.
- 4. Convert temperature expressed in Celsius degrees to degrees Kelvin and vice versa.
- 5. State Avogadro's law in words and in the form of an algebraic equation.
- 6. State Boyle's law in words and in the form of an algebraic equation.
- 7. State Charles' law in words and in the form of an algebraic equation.
- 8. State Dalton's law in words and in the form of an algebraic equation.
- 9. State Graham's law in words and in the form of an algebraic equation.
- 10. Use the various gas laws to solve mathematical problems relating changes in the variables that describe gases.
- 11. Explain how the Ideal Gas law can be derived from the above gas laws.
- 12. Use the Ideal Gas law to solve mathematical problems relating changes in the variables that describe gases.
- 13. Use the Ideal Gas law to determine the molar mass of a gas.
- 14. Define STP and Standard Molar Volume.
- 15. List and explain the postulates contained in the Kinetic Molecular Theory of Gas Behavior.
- 16. Show how the theory attempts to explain the various gas laws.
- 17. Differentiate between "ideal" and "real" gas behavior.
- 18. Identify the conditions of temperature and pressure that result in deviations from ideal gas behavior.
- 19. Explain how the van der Waals equation attempts to take into account real gas behavior.
- 20. Define critical temperature, and relate this to real gas behavior.