| Dr. N | ral Che
1. J. Wi
nination | · | | Name | | | | |--------|---------------------------------|---|--|---------------------------------|--------------------------------------|-----------------------|--| | (4) 1. | | Which one of the following species cannot function as a Brønsted-Lowry acid? | | | | | | | | | a) OH ⁻¹ | b) HCO ₃ -1 | c) H ₂ O | d) CO | e) NH3 | | | (4) | 2. | Which one of the following species <i>cannot</i> function as a Brønsted-Lowry base? | | | | | | | | | a) BH ₃ | b) H ₂ S | c) PH ₃ | d) N ₃ -1 | e) NO ₃ -1 | | | (4) | 3. | Which one of the following species <i>cannot</i> function as a Lewis base? | | | | | | | | | a) H ⁻¹ | b) NH ₃ | c) AlH ₃ | d) CH ₃ -1 | e) H ₂ Se | | | (4) | 4. | Which one of the following species <i>cannot</i> function as a Lewis acid? | | | | | | | | | a) BF ₃ | b) AlBr ₃ | c) H ⁺¹ | d) CH ₃ +1 | e) CF ₄ | | | (4) | 5. | On the basis of its structure, which one of the following species cannot function as either a Lewis acid or a Lewis base? | | | | | | | | | a) PH4 ⁺¹ | b) PH ₃ | c) PH ₂ -1 | d) CH ₃ +1 | e) CH ₃ -1 | | | (4) | 6. | Which one of the following is <u>not</u> a conjugate acid/base pair? | | | | | | | | | a) H ₂ PO ₄ -1/H ₃ PO ₄ | | | b) OH ⁻¹ /O ⁻² | | | | | | c) H | N ₃ /N ₃ -1 | | d) HSO ₄ -1, | /SO ₃ -2 | | | | | e) All o | f the above cl | hoices are co | njugate acid/l | oase pairs | | | (4) | 7. | The reaction | on, NH4 ⁺¹ + I | NH ₂ -1 —▶ | NH ₃ , rep | resents: | | | | | b) a Bro
c) a Le
d) an e | Arrhenius acionsted-Lowry wis acid/base xample of box ample amp | acid/base reaction that a and b | | | | As the ability of an acid to lose protons increases, the ability of its conjugate base to attract protons (increases, decreases, remains the same). (4) 8. | (6) | 9. | In the hydrolysis reaction of cyanide with water, as the $\%$ - | | | | |-----|----|---|--|--|--| | ` ' | | hydrolysis increases at constant temperature, the hydronium | | | | | | | ion concentration in the aqueous medium (increases, | | | | | | | decreases, remains the same), and the pH of the medium | | | | | | | (increases, decreases, remains the same). | | | | - (12) 10. The pH of pure water at 25° C is 7.00. - a) With an increase in temperature, the number of collisions between water molecules (increases, decreases, remains the same), and the percent ionization (increases, decreases, remains the same). - b) Relative to K_W at 25°C, K_W at 50°C would be (greater, smaller, unchanged) in magnitude. - c) The pH of pure water at 50°C would be a numerical value (less than, greater than, identical to) that at 25°C. - (6) 11. At 25°C, the pH of a "Bloody Mary" (vodka + tomato juice) is 4.10. The hydronium ion concentration in this beverage is _____M. If the pH of pure vodka is 7.20, then tomato juice is (acidic, basic, neutral). - (8) 12. Arrange the following species in order of decreasing basicity (weakest base last): - a) HSe⁻¹, Br⁻¹, AsH₂⁻¹, GeH₃⁻¹ > > - b) P-3, N-3, Sb-3, As-3 > > - (9) 13. Indicate what pH change (if any) would be expected by the: - a) addition of NaNO₃(s) to an aqueous HNO₃ solution at 25°C (pH increases, pH decreases, no significant change) - b) addition of NaF(s) to an aqueous HF solution at 25°C (pH increases, pH decreases, no significant change) - c) addition of NH₄NO₃(s) to an aqueous NH₃ solution at 25°C (pH increases, pH decreases, no significant change) (6) 14. What mass, in grams, of NaOH is required to react with 20.0 ml of a 0.30M H₃PO₄ solution to produce Na₂HPO₄? Show all work in the space below. (7) 15. What is the pH of an aqueous solution at 25°C that is prepared from 175 ml of 0.10M HCl and 125 ml of 0.10M Ba(OH)₂? Assume that volumes are additive. Show all work in the space below. - 16. The pH of a 0.02M aqueous solution of weak acid HZ is 5.00 at 25°C. - (5) a) Determine the acid ionization constant, K_a, for HZ. Show all work in the space below. - (2) b) Determine the %-ionization. Show all work in the space below. - (7) 17. Determine the pH, at 25°C, of a 500 ml aqueous solution that contains 6.90 g of NaNO₂. K_a for HNO₂ at 25°C is 4.5x10⁻⁴. Show all work in the space below.