Dr. N	ral Che 1. J. Wi nination	·		Name			
(4) 1.		Which one of the following species cannot function as a Brønsted-Lowry acid?					
		a) OH ⁻¹	b) HCO ₃ -1	c) H ₂ O	d) CO	e) NH3	
(4)	2.	Which one of the following species <i>cannot</i> function as a Brønsted-Lowry base?					
		a) BH ₃	b) H ₂ S	c) PH ₃	d) N ₃ -1	e) NO ₃ -1	
(4)	3.	Which one of the following species <i>cannot</i> function as a Lewis base?					
		a) H ⁻¹	b) NH ₃	c) AlH ₃	d) CH ₃ -1	e) H ₂ Se	
(4)	4.	Which one of the following species <i>cannot</i> function as a Lewis acid?					
		a) BF ₃	b) AlBr ₃	c) H ⁺¹	d) CH ₃ +1	e) CF ₄	
(4)	5.	On the basis of its structure, which one of the following species cannot function as either a Lewis acid or a Lewis base?					
		a) PH4 ⁺¹	b) PH ₃	c) PH ₂ -1	d) CH ₃ +1	e) CH ₃ -1	
(4)	6.	Which one of the following is <u>not</u> a conjugate acid/base pair?					
		a) H ₂ PO ₄ -1/H ₃ PO ₄			b) OH ⁻¹ /O ⁻²		
		c) H	N ₃ /N ₃ -1		d) HSO ₄ -1,	/SO ₃ -2	
		e) All o	f the above cl	hoices are co	njugate acid/l	oase pairs	
(4)	7.	The reaction	on, NH4 ⁺¹ + I	NH ₂ -1 —▶	NH ₃ , rep	resents:	
		b) a Bro c) a Le d) an e	Arrhenius acionsted-Lowry wis acid/base xample of box ample of box amp	acid/base reaction that a and b			

As the ability of an acid to lose protons increases, the ability of its conjugate base to attract protons (increases, decreases, remains the same).

(4)

8.

(6)	9.	In the hydrolysis reaction of cyanide with water, as the $\%$ -			
` '		hydrolysis increases at constant temperature, the hydronium			
		ion concentration in the aqueous medium (increases,			
		decreases, remains the same), and the pH of the medium			
		(increases, decreases, remains the same).			

- (12) 10. The pH of pure water at 25° C is 7.00.
 - a) With an increase in temperature, the number of collisions between water molecules (increases, decreases, remains the same), and the percent ionization (increases, decreases, remains the same).
 - b) Relative to K_W at 25°C, K_W at 50°C would be (greater, smaller, unchanged) in magnitude.
 - c) The pH of pure water at 50°C would be a numerical value (less than, greater than, identical to) that at 25°C.
- (6) 11. At 25°C, the pH of a "Bloody Mary" (vodka + tomato juice) is 4.10. The hydronium ion concentration in this beverage is _____M. If the pH of pure vodka is 7.20, then tomato juice is (acidic, basic, neutral).
- (8) 12. Arrange the following species in order of decreasing basicity (weakest base last):
 - a) HSe⁻¹, Br⁻¹, AsH₂⁻¹, GeH₃⁻¹ > >
 - b) P-3, N-3, Sb-3, As-3 > >
- (9) 13. Indicate what pH change (if any) would be expected by the:
 - a) addition of NaNO₃(s) to an aqueous HNO₃ solution at 25°C (pH increases, pH decreases, no significant change)
 - b) addition of NaF(s) to an aqueous HF solution at 25°C (pH increases, pH decreases, no significant change)
 - c) addition of NH₄NO₃(s) to an aqueous NH₃ solution at 25°C (pH increases, pH decreases, no significant change)

(6) 14. What mass, in grams, of NaOH is required to react with 20.0 ml of a 0.30M H₃PO₄ solution to produce Na₂HPO₄? Show all work in the space below.

(7) 15. What is the pH of an aqueous solution at 25°C that is prepared from 175 ml of 0.10M HCl and 125 ml of 0.10M Ba(OH)₂? Assume that volumes are additive. Show all work in the space below.

- 16. The pH of a 0.02M aqueous solution of weak acid HZ is 5.00 at 25°C.
- (5) a) Determine the acid ionization constant, K_a, for HZ. Show all work in the space below.
- (2) b) Determine the %-ionization. Show all work in the space below.
- (7) 17. Determine the pH, at 25°C, of a 500 ml aqueous solution that contains 6.90 g of NaNO₂. K_a for HNO₂ at 25°C is 4.5x10⁻⁴. Show all work in the space below.