1. Complete the following chemical equations by supplying the proper reactants or major products:

(6) a) isopropylbenzene
$$(X)$$
 $(C_9H_{11}Br)$ (Y) $(C_9H_{11}Br)$

(6) b)
$$H_2SO_4$$
 H_2SO_4 H_2SO_4

(6) c)
$$\frac{}{(C_4H_{10}O)}$$
 or $\frac{}{(C_4H_8)}$ $\frac{H^+}{\text{benzene}}$ tert-butylbenzene

(6) d)
$$\frac{}{(C_8H_7BrCl_2)}$$
 or $\frac{}{(C_8H_7BrCl_2)}$ $\frac{}{KMnO_4}$ 2,6-dichlorobenzoic acid structural isomers

(4) e)
$$CH_2$$
 $CI_2/AlCl_3$

(6) f)
$$+$$
 $AlCl_3$ $+$ CH_3 $+$ CH_3

- Outline all steps in the syntheses of the two following compounds starting from benzene and any other necessary organic and inorganic reagents.
 - a) 5-chloro-2-bromobenzoic acid
- b) 3-ethylchlorobenzene

(8) 3. Aklomide, a pharmaceutical agent used to treat certain fungal and protozoal infections in veterinary medicine, is the amide derivative of 2-chloro-4-nitrobenzoic acid. Complete the following reaction sequence for the synthesis of Aklomide.

Aklomide

(12) 4. Designate each of the following species as aromatic, antiaromatic, or non-aromatic:

(6) 5. Arrange the following benzene derivatives in order of decreasing reactivity towards electrophilic aromatic substitution:

(12)	6.	Compounds (X) and (Y) are structural isomers of formula $C_{10}H_{12}$. Both (X) and (Y) are chiral and, upon hot KMnO ₄ oxidation, both produce phthalic acid (1,2-benzenedicarboxylic acid). Draw structural formulas for (X) and (Y) that are consistent with all the data provided. (From the data provided, it will not be possible to differentiate between the $C_{10}H_{12}$ structural isomers).
		unferentiate between the C ₁₀ m ₁₂ structural isomers).

(10) 7. Compounds (J) and (K) are structural isomers of formula C₁₈H₃₀. Each has a pmr spectrum that consists of only two singlet signals. Compound (J) has a cmr spectrum that has four signals, whereas that of (K) has five signals.

Draw structural formulas for (J) and (K) that are consistent with all the spectral data provided.