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1 Problem 1

1.1 Part a

We have A(t) = 6.687(0.931)t, where t is measured in days and A(t) is measured in
pounds. So the average rate of change of A(t) over the interval 0 ≤ t ≤ 30 is

A(30)−A(0)
30− 0

∼ 0.7829279− 6.687

30
∼ −0.19680 pounds per day. (1)

1.2 Part b

We have A′(t) = 6.687 · (0.931)t · ln(0.931) = 0.47809376 · (0.931)t, so A′(15) ∼ −0.16359.
Thus, after 15 days have passed, the amount of grass clippings remaining in the bin is
changing at about the rate of −0.164 pounds per day.

1.3 Part c

The average amount of grass clippings in the bin over the interval 0 ≤ t ≤ 30 is

1

30

∫ 30

0
A(τ) dτ,

so we must solve for t in the equation

30A(t) =

∫ 30

0
A(τ) dτ. (2)

We solve numerically and obtain t ∼ 12.41477. Thus, we need 12.41477 days.
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1.4 Part d

The linear approximation L(t) to A at t = 30 is

L(t) = A(30) +A′(30)(t− 30), or (3)
L(t) ∼ 0.78293− 0.05598(t− 30). (4)

To find the approximate time at which there will be 0.5 pounds of grass clippings remain-
ing in the bin, we must solve the equation L(t) = 0.5 for t. Doing so, we find that, accord-
ing to this model, there will be 0.5 pounds of grass clippings in the bin when t = 35.05443
days.

2 Problem 2

2.1 Part a

To find the area of the region that is inside the graphs of the polar equation r = 3 and
the polar equation r = 3 − 2 sin 2θ, with 0 ≤ θ ≤ π, we must first find the points where
the two curves intersect, or where 3 = 3 − 2 sin 2θ. The solutions to this equation in the
interval [0, π] are those of the equation sin 2θ = 0, or θ = 0, π/2, π. The area A in question
is therefore given by

A =
1

2

∫ π/2

0
[3− 2 sin 2θ]2 dθ +

32

4
π. (5)

Numerical integration gives A ∼ 9.70796.

Note: Symbolic integration is feasible, if a bit time-consuming:

1

2

∫ π/2

0
[3− 2 sin 2θ]2 dθ =

1

2

∫ π/2

0

[
9− 12 sin 2θ + 4 sin2 2θ

]
dθ (6)

=

[
9

2
θ + 3 cos 2θ

] ∣∣∣∣π/2
0

+

∫ π/2

0
(1− cos 4θ) dθ (7)

=
9

4
π − 6 +

[
θ − 1

4
sin 4θ

] ∣∣∣∣π/2
0

=
11

4
π − 6. (8)
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2.2 Part b

If r = 3− 2 sin 2θ, then

x = r cos θ = [3− 2 sin 2θ] cos θ, so (9)
dx

dθ
= 4 cos θ cos 2θ − sin θ(3− 2 sin 2θ) (10)

When θ = π/6 this is

dx

dθ

∣∣∣∣
θ=π/6

= 4 cos
π

6
cos

π

3
− sin

π

6
(3− 2 sin

π

3
) (11)

=
1

2

(√
3− 1

)
∼ 1.09808 (12)

2.3 Part c

This question is poorly stated, because “the distance between the curves” is zero. (They
cross! More than once!) This is a constant and doesn’t change—no matter what the first
sentence of the problem says. The problem writers probably meant “the distance from one
curve to the other along the ray corresponding to the value of θ”. Using this interpretation,
the distance,D(θ, that corresponds to a given value θ isD(θ) = 3−(3−2 sin 2θ) = 2 sin 2θ.
ThenD′(θ) = 4 cos 2θ gives the rate at which the distance changes with respect to θ. When
θ = π/3, we have

D′(π/3) = 4 cos
[
2 · π

3

]
= −2. (13)

Thus, the required rate of change is −2.

2.4 Part d

When

r = 3− 2 sin 2θ, (14)

we have

dr

dt
= −4dθ

dt
cos 2θ. (15)

Thus, under the circumstances given,

dr

dt
= −4 · 3 · cos π

3
= −6. (16)
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3 Problem 3

We are given a function graphically; it can be written as

f(x) =



−x− 3, −5 ≤ x ≤ −3;

4

3
x+ 4, −3 < x ≤ 0;

4− 2x, 0 < x ≤ 4.

(17)

We put g(x) =
∫ x

−3
f(t) dt.

3.1 Part a

The integral that gives g(3) is the sum of the (signed) areas of the triangle whose vertices
are (−5, 2), (−3, 0), and (−5, 0); the triangle whose vertices are (−3, 0), (2, 0), and (0, 4);
and the triangle whose vertices are (2, 0), (3,−2), and (3, 0). Thus, g(3) = 2+ 10+ (−1) =
11.

3.2 Part b

The function f is, by the Fundamental Theorem of Calculus, the function g′. So f ′, which
gives the slope of f , is g′′. Thus, g is both increasing and concave down where f is positive
and f ′ is negative. The intervals in question are therefore (−5,−3) and (0, 2).

3.3 Part c

With h(x) =
g(x)

5x
, we have

h′(x) =
5xg′(x)− 5g(x)

25x2
, so (18)

h′(3) =
�5 · 3 · g′(3)− �5 · g(3)

�5 · 3
(19)

=
3 · f(3)− g(3)

3
(20)

=
3 · (−2)− 11

3
= −17

3
. (21)
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3.4 Part d

If p(x) = f
(
x2 − x

)
, then, by the Chain Rule,

p′(x) = (2x− 1)f ′
(
x2 − x

)
. (22)

Thus,

p′(1) = [2 · (−1)− 1] · f ′
[
(−1)2 − (−1)

]
(23)

= (−3) · f ′(2) = (−3) · (−2) = 6. (24)

4 Problem 4

4.1 Part a

The average acceleration of the train over the interval 2 ≤ t ≤ 8 is

vA(8)− vA(2)
8− 2

=
(−120)− 100

6
= −220

6
= −110

3
meters/min/min. (25)

4.2 Part b

We are given that the velocity function, vA, is differentiable in its domain, so it is also
continuous there. Now vA(5) = 40 and vA(8) = −120 are given in the table, so the Inter-
mediate Value Property of continuous functions guarantees that there is a number ξ in the
interval (5, 8) for which vA(ξ) = −100.

Note: Continuity of the derivative is not needed here; derivatives have the Intermediate
Value Property—even though they need not be continuous functions. This fact is not
ordinarily known to students at the level of AP Calculus, so a student who wants to use
it should state it explicitly.

4.3 Part c

Under the conditions given, if sA(t) denotes the distance of train A from Origin Station at
time t, then sA is given by

sA(t) = 300 +

∫ t

2
vA(τ) dτ. (26)
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The train’s distance from Origin Station at time t = 12 is thus given by

sA(12) = 300 +

∫ 12

2
vA(τ) dτ. (27)

The trapezoidal approximation, using the three subintervals given in the table, is

sA(12) = 300 +
1

2
[(100 + 40) · 3 + (40− 120) · 3 + (−120− 150) · 4] = −150 meters. (28)

4.4 Part d

Let sB(t) denote the distance of train B from Origin Station at time t. The distance S(t)
between the two trains then satisfies the equation

S2 = s2A + s2B. (29)

Implicit differentiation with respect to t gives

2S(t)S′(t) = 2sA(t)s
′
A(t) + 2sB(t)s

′
B(t) (30)

= 2sA(t)vA(t) + 2sB(t)vB(t). (31)

Substituting t = 2 and using what has been given in the problem, we find that S′(2) = 160
meters per minute.

5 Problem 5

5.1 Part a

If R is the region bounded by the curves y = xex
2
, y = −2x, and x = 1, then the area of R

is ∫ 1

0

[
xex

2 − (−2x)
]
dx =

(
1

2
ex

2
+ x2

) ∣∣∣∣1
0

(32)

=

(
1

2
· e1 + 1

)
−
(
1

2
e0 + 0

)
=

1

2
(e+ 1). (33)
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5.2 Part b

The volume, V , of the solid generated by rotating R about the horizontal line y = −2
(which passes through the lowest vertex of R) is

V = π

∫ 1

0

[
(xex

2
+ 2)2 − (−2x+ 2)2

]
dx. (34)

The integral, which need not be evaluated, is not elementary.

5.3 Part c

The lower diagonal boundary of R is a line segment that extends from (0, 0) to (1,−2),
and has length

√
5. The right-hand boundary of R is a line segment that extends from

(1,−2) to (1, e) and has length (e+ 2). finally, the upper boundary is the part of the curve
y = xex

2
that extends from (0, 0) to (1, e) and has length∫ 1

0

√
1 + (y′)2 dx =

∫ 1

0

√
1 +

(
ex2 + 2x2ex2

)2
dx. (35)

The required perimeter, P , is given by

P =
√
5 + (e+ 2) +

∫ 1

0

√
1 +

(
ex2 + 2x2ex2

)2
dx (36)

The integral, which need not be evaluated, is not elementary.

6 Problem 6

6.1 Part a

We apply the Ratio Text:

lim
n→∞

[(
2n+1

n+ 1
|x− 1|n+1

)
/

(
2n

n
|x− 1|n

)]
= |x− 1| lim

n→∞

2n

n+ 1
(37)

= |x− 1| 2

1 + (1/n)
= 2|x− 1|. (38)

This limit is less than one when |x− 1| < 1/2, so the radius of convergence is 1/2.
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6.2 Part b

The general term of the series expansion for f(x) about x = 1 is

(−1)n+1 2
n

n
(x− 1)n, n = 1, 2, 3 . . . ,

which we differentiate to obtain the general term for the expansion of f ′(x) about x = 1.
This latter is thus

(−1)n+12n(x− 1)n−1, n = 1, 2, 3 . . . .

The series for f ′(x) thus begins

2− 4(x− 1) + 8(x− 1)2 + · · · .

6.3 Part c

If the series in Part b represents f ′(x), then, because that series is geometric with common
ratio −2(x− 1), we must have

f ′(x) =
1

1 + 2(x− 1)
=

1

2x− 1
(39)

when |2(x− 1)| < 1. This means that

f(x) =

∫
dx

2x− 1
=

1

2
ln |2x− 1|+ C, (40)

where C is a yet to be determined constant. But we know that |x− 1| < 1/2 for the series
to be convergent. Consequently, 0 < 2x− 1 < 2, and |2x− 1| = 2x− 1. Using the original
series, we find that f(1) = 0, and we may write

0 = f(1) =
1

2
ln(2 · 1− 1) + C = C. (41)

It now follows that

f(x) =
1

2
ln(2x− 1) (42)

when |x− 1| < 1/2 or, equivalently,
1

2
< x <

3

2
.
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