Problem 1.15 DRAFT solution

1.15. Problem. (Section 3.4) A health study tracked a group of persons for five years. At the beginning of the study, 20% were classified as heavy smokers, 30% were classified as light smokers and the remaining were non-smokers. Results of the study showed that light smokers were twice as likely to die during the fiveyear study as non-smokers, but half as likely as heavy smokers. A randomly selected participant died over the five-year study. Find the probability that the participant was a heavy smoker.

Conditional probability:
We want to find: The probability that a randomly selected participant (1) died AND (2) was a heavy smoker.

Restated in conditional probability form:
"Given that a participant in the study died, find the probability that they were a heavy a smoker."

Restated in notation:
Let $\mathrm{H}=$ Heavy smoker
Let L = Light smoker
Let $\mathrm{N}=$ Non-smoker
Let $D=$ Death
Find:
Prob(Death GIVEN Heavy Smoker) = Prob(Heavy Smoker | Death)
=> Find $\mathrm{P}(\mathrm{H} \mid \mathrm{D})$

Translate givens to probability statements:

Givens, part 1: (i) 20% were classified as heavy smokers (ii) 30% were classified as light smokers (iii) remaining were classified as non-smokers	Translated: (i) Prob(Heavy smoker) $=20 \%$ (ii) Prob(Light smoker) $=30 \%$ (iii) $\operatorname{Prob}($ Non-smoker) $=$ remaining
```Convert to probability notation: P(H) = 0.20 P(L) = 0.30 P(N) = r```	Solve for $r$ to get $P(N)$ : $\begin{aligned} P(N) & =1-(P(H)+P(L)) \\ & =1-0.20+0.30 \\ & =1-0.50 \\ & =0.50 \end{aligned}$

Meaning we have the following probabilities:
$P(H)=0.20$
$P(L)=0.30$
$P(N)=0.50$

## Givens, part 2:

(iv) Light smokers were twice as likely to die during the study as non-smokers. (v) Light smokers were half as likely to die as heavy smokers.

Restate in conditional probability form:
(iv) The probability that (1) will die AND (2) is a Light smoker.
"Given a participant is a Light Smoker, the probability of death is 2 times as
likely as a Non-smoker."
Prob(Death | Light smoker) = 2 * Prob(Non-smoker)
$P(D \mid L)=2 * P(N)$
(v) "Given a participant Death, the probability that they were a light smoker is one-half as likely as a Heavy smoker."
Prob(Death | Light smoker) = 1/2 * Prob(Non-smoker)
$P(D \mid L)=1 / 2 * P(D \mid H)$
Formula:
We will solve using Bayes' Theorem, which informally is:
The probability of event B occurring, given event A occurring is:
The probability of event $B$ given event A occurring * The probability of A The sum of all the problem's conditional probability possibilities

Formally:
For $\mathbf{j}=1, \ldots, n$
$P\left(A_{j} \mid B\right)=P\left(B A_{j}\right)=P\left(B \mid A_{j}\right) * P\left(A_{j}\right)$
$P(B) \quad P\left(B \mid A_{j}\right) * P\left(A_{1}\right)+P\left(B \mid A_{2}\right)+\ldots+P\left(B \mid A_{j}\right) * P\left(A_{j}\right)+\ldots+P\left(B \mid A_{n}\right) * P\left(A_{n}\right)$

```
Translate from the formula to this problem:
P(A1) is P(H) = 0.20
P(A2) is P(L) = 0.30
P(A3) is P(N) = 0.50
P(B) is P(D) = unknown
P(D | H) = unknown
P(D | L) = 2*P(D | N) -> 1/2*P(D | L) = P(D | N)
P(D | L) = 1/2*P(D | H) > 2 * P(D | L) = P(D | H)
P(D | N) = unknown
```

Goal: Find P(D | H)
So we still have some unknowns. That most likely means we are hoping for some kind of insight or algebraic trick.

$$
P(H \mid D)=\frac{P(D \mid H) * P(H)}{P(D \mid H) * P(H)+P(D \mid L) * P(L)+P(D \mid N) * P(N)}
$$

Substitute probability knowns and see if that helps:
$\mathrm{P}(\mathrm{H} \mid \mathrm{D})=\frac{\mathrm{P}(\mathrm{D} \mid \mathrm{H}) * 0.20}{\mathrm{P}(\mathrm{D} \mid \mathrm{H}) * 0.20+\mathrm{P}(\mathrm{D} \mid \mathrm{L}) * 0.30+\mathrm{P}(\mathrm{D} \mid \mathrm{N}) * 0.50}$

Now, since we have those two algebraic equations, let's try some algebraic substitutions.
2 * $P(D \mid L)$ can be substituted for $P(D \mid H)$ in the numerator and denominator:
$P(H \mid D)=$

$\mathbf{2} * \mathbf{P}(\mathbf{D} \mid \mathrm{L}) * 0.20$
$\mathbf{2 * P ( D \| H ) * 0 . 2 0 + P ( D \| L ) * 0 . 3 0 + P ( D \| N ) * 0 . 5 0}$

Similarly, $1 / 2 * P(D \mid L)$ can be substituted for $P(D \mid N):$
$\mathrm{P}(\mathrm{H} \mid \mathrm{D})=\frac{2 * \mathrm{P}(\mathrm{D} \mid \mathrm{L}) * 0.20}{2 * \mathrm{P}(\mathrm{D} \mid \mathrm{H}) * 0.20+\mathrm{P}(\mathrm{D} \mid \mathrm{L}) * 0.30+\mathbf{1 / 2} * \mathbf{P ( D | L )} * 0.50}$

Now everything is in terms of only one unknown, so we can do the algebra: numerator: $2 * 0.20=0.40$
denominator: $(2$ * 0.20$)+0.30+(1 / 2 * 0.50)=0.95$
$P(D \mid H)=\frac{0.40 P(D \mid L)}{0.95 P(D \mid L)}$ and the unknown conditional probability cancels
Answer:
Therefore, $\mathrm{P}(\mathrm{H} \mid \mathrm{D})=\underline{0.95} \underline{0.40}=0.4210526=0.42$

