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1 Problem 1

1.1 Part a

We estimate R′(2) as

R′(2) ∼ R(3)−R(1)
3− 1

=
950− 1190

2
= −120 liters/hour2. (1)

1.2 Part b

To estimate the total amount of water removed from the tank during the time interval
[0, 8] with a left Riemann sum having four sub-intervals, we may write

R(0) · [1− 0] +R(1) · [3− 1] +R(3) · [6− 3] +R(6) · [8− 6] = (2)
1340 · 1 + 1190 · (3− 1) + 950 · (6− 3) + 740 · (8− 6) = 8050. (3)

The function R is decreasing, so the left-hand endpoint of each subinterval gives the max-
imum value of R on that subinterval. Thus, a left-hand Riemann sum gives an overesti-
mate of the integral.

1.3 Part c

The total amount of water in the tank at time t is

50000 +

∫ t

0
[W (τ)−R(τ)] dτ = 50000 + 2000

∫ t

0
e−τ

2/20 dτ −
∫ t

0
R(τ) dτ, (4)
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or, when t = 8,

∼ 50000 + 2000

∫ 8

0
e−τ

2/20 dτ − 8050. (5)

Thus, after carrying out the remaining integration numerically, we find that the amount
of water in the tank when t = 8 is approximately 49786.19532 liters. To the nearest liter,
this is 49786 liters.

1.4 Part d

We consider the function F (t) =W (t)−R(t). The functionsW andR are both continuous
on the interval [0, 8], so the function F is also continuous on that interval. We have F (0) =
660, while F (8) ∼ −618.5 to the nearest tenth. Thus, F (0) > 0 while F (8) < 0, and, by the
Intermediate Value Propery of continouus functions, there is a point ξ somewhere in the
interval (0, 8) for which F (ξ) = 0. For this ξ we have W (ξ) − R(ξ), so the answer to the
question is “Yes.”

2 Problem 2

2.1 Part a

If

v(t) = 1 + 2 sin
t2

2
, (6)

then speed, σ(t), is given by

σ(t) = |v(t)| =
√

[v(t)]2 =

√[
1 + 2 sin

t2

2

]2
, (7)

so that

σ(′t) =

[
1 + 2 sin t2

2

] [
2t cos t

2

2

]
√[

1 + 2 sin t2

2

]2 (8)

Now 1 + 2 sin 8 ∼ 2.98 > 0, so some calculation gives

σ′(4) = 8 cos 8 ∼ −1.164 < 0. (9)

Consequently, speed is decreasing when t = 4.
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2.2 Part b

We seek values of t in [0, 3] where v(t) changes sign. This can happen only where v(t) = 0
or where

0 = 1 + 2 sin
t2

2
, which is (10)

sin
t2

2
= −1

2
. (11)

If 0 ≤ t ≤ 3, then 0 ≤ t2 ≤ 9, so the only value of t in [0, 3] for which (11) can hold is
t =

√
7/π/6 ∼ 2.07047. The quantity t2/2 increases through 7π/6 as t increases through√

7π/6, so the value of the sine function at t2/2 decreases through −1/2. Thus, v(t) does
indeed change sign (from positive to negative) at t =

√
7π/6, and this is the only point in

the interval [0, 3] where there is a sign change for v.

2.3 Part c

By the Fundamental Theorem of Calculus, the position x(t) of the particle at time t is

x(t) = x(4) +

∫ t

4
v(τ) dτ (12)

= 2 +

∫ t

4

[
1 + 2 sin

τ2

2

]
dτ. (13)

Setting t = 0 and integrating numerically (the integral is not elementary, and we have no
other choice), we obtain

x(0) = 2 +

∫ 0

4

[
1 + 2 sin

τ2

2

]
dτ ∼ −3.18503. (14)

2.4 Part d

The total distance the particle travels during the interval [0, 3] is∫ 3

0
|v(τ)| dτ =

∫ 3

0

∣∣∣∣1 + 2 sin
τ2

2

∣∣∣∣ dτ ∼ 5.30120, (15)

where we have again integrated numerically.
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3 Problem 3

For a graph of g, see Figure 1.
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Figure 1: Problem 3, Graph of g

3.1 Part a

If g(x) =
∫ x
2 f(t) dt then, by the Fundamental Theorem of Calculus, g′(x) = f(x). While

g′(10) = −, we see that g′(x) is negative for all values of x in some punctured neighbor-
hood of x = 10. Thus, by the First Derivative Test, g has neither a relative minimum nor a
relative maximum at x = 10.

3.2 Part b

Arguing again from the given graph, which is that of g′, we see that g′ is increasing on an
interval just to the left of x = 4 but decreasing on an interval just to the right of x = 4.
Thus, g has an inflection point where x = 4. (In fact, g is concave upward immediately to
the left of x = 4 and concave downward immediately to the right of x = 4.)
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3.3 Part c

The absolute minimum value must occur either at an endpoint of the interval or at a point
where g′(x) undergoes a sign change from negative to positive as x increases. The only
points that qualify are x = −4, x = −2, and x = 12. Summing the areas of the appropriate
triangles (with appropriate signs), we see that g(−4) = −4, g(−2) = −9, and g(12) = −4.
Thus, g has its absolute minimum at x = −8.

Similar reasoning shows that the absolute maximum of g(x) can only be at x = −4, x = 6,
or x = 12. But this makes g(6) = 8 the absolute maximum. (We evaluated the other two
possibilities in the preceding paragraph.)

3.4 Part d

On any interval of the form [x, 2], with −4 ≤ x < 2, the area between the curve y = f(x)
and the x-axis, and lying above the x-axis, exceeds that below the x-axis. Thus guarantees
that, for such x, g(x) < 0.

On the other hand, on any interval of the form [2, x], with x > 2, the area of the region
bounded by f and below the x-axis doesn’t exceed that of the region above the x-axis
unless x > 10. This means that g(x) ≥ 0 for x ≤ x ≤ 10, and g(x) < 0 when 10 < x.

The desired intervals are [−4, 2] and [10, 12].

4 Problem 4

4.1 Part a

See Figure 2.

4.2 Part b

If a solution, f , of the differential equation
dy

dx
=

y2

x− 1
passes through the point (2, 3), the

slope of its tangent line at that point is

dy

dx

∣∣∣∣
(2,3)

=
y2

x− 1

∣∣∣∣
(2,3)

= 9. (16)
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Figure 2: Problem 4a, the slope field

An equation for that tangent line is therefore

y = 3 + 9(x− 2). (17)

It follows from this that

f(2.1) ∼ 3 + 9(2.1− 2) = 3.9. (18)

4.3 Part c

Let y = f(x) be the solution of the differential equation
dy

dx
=

y2

x− 1
which passes through

the point (2, 3). Then

f ′(x) =

[
f(x)

]2
x− 1

(19)

for all values of x in some open interval I that contains x = 2. We may assume that the
number one doesn’t lie in I , so that x − 1 > 0 throughout I . Moreover, because f must
be a continuous function whose value at x = 2 is 3, we may also assume that f(x) 6= 0
anywhere in I . Consequently, throughout I we may write

f ′(x)[
f(x)

]2 =
1

x− 1
. (20)
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Moreover, both sides of (20) are integrable on subintervals of I . Consequently, if x is any
point of I , we have ∫ x

2

f ′(ξ)[
f(ξ)

]2 dξ = ∫ x

2

dξ

ξ − 1
; (21)

− 1

f(ξ)

∣∣∣∣x
2

= ln(ξ − 1)

∣∣∣∣x
2

; (22)

− 1

f(x)
+

1

f(2)
= ln(x− 1)− ln(2− 1); (23)

1

3
− 1

f(x)
= ln(x− 1). (24)

It now follows that

f(x) =
3

1− 3 ln(x− 1)
. (25)

5 Problem 5

5.1 Part a

The average value of the funnel’s radius is

1

10− 0

∫ 10

0

3 + h2

20
dh =

3

200

∫ 10

0
dh+

1

200

∫ 10

0
h2 dh (26)

=
3

200
· 10 + 1

200
· 1000

3
(27)

=
3

20
+

5

3
=

109

60
. (28)

The average value of the radius is
109

60
inches.
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5.2 Part b

The volume, V , of the funnel is

V = π

∫ 10

0
[r(h)]2 dh (29)

=
π

400

∫ 10

0
(3 + h2)2 dh (30)

=
π

400

∫ 10

0

(
9 + 6h2 + h4

)
dh (31)

=
π

400

(
9h+ 2h3 +

1

5
h5
) ∣∣∣∣10

0

(32)

=
π

400
(90 + 2000 + 20000) =

2209

40
π in3. (33)

5.3 Part c

The radius r(t) and the height y(t) are related by the equation

r(t) =
1

20

(
3 + [y(t)]2

)
, (34)

so that

r′(t) =
1

10
y(t)y′(t), (35)

or

y′(t) = 10
r′(t)

y(t)
. (36)

Thus, at the instant when r′(t0) = −1/5 in/sec and y(t0) = 3 in, the height is changing at
the rate

y′(t0) =
10

3
·
(
−1

5

)
= −2

3
in/sec. (37)
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6 Problem 6

6.1 Part a

If k(x) = f [g(x)], then k′(x) = f ′[g(x)] · g′(x), so

k′(3) = f ′[g(3)] · g′(3) = f(6) · 2 = 5 · 2 = 10. (38)

Also,

k(3) = f [g(3)] = f(6) = 4. (39)

An equation for the required tangent line is therefore

y = k(3) + k′(3)(x− 3), (40)

or

y = 4 + 10(x− 3). (41)

6.2 Part b

If

h(x) =
g(x)

g(x)
, (42)

then

h′(1) =
g′(1)f(1)− g(1)f ′(1)

[f(1)]2
(43)

=
8 · (−6)− 2 · 3

(−6)2
= −3

2
. (44)
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6.3 Part c

We let u = 2x. Then du = 2 dx or dx =
1

2
du. Also, x = 1 ⇒ u = 2, and x = 3 ⇒ u = 6.

Thus ∫ 3

1
f ′′(2x) dx =

1

2

∫ 6

2
f ′′(u) du (45)

=
1

2
f ′(u)

∣∣∣∣6
2

=
1

2

[
f ′(6)− f ′(2)

]
(46)

=
1

2
[5− (−2)] = 7

2
. (47)
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