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1 Problem 1

1.1 Part a

Because fish enter the lake at the rate E(t) = 20 + 15 sin
πt

6
, with t in hours after midnight, the

number, F , of fish that enter the lake over the 5-hour period from t = 0 to t = 5, is given by

F =

∫ 5

0

E(t) dt =

∫ 5

0

[
20 + 15 sin

πτ

6

]
dτ (1)

=
[
20τ − 90 cos

πτ

6

] ∣∣∣∣5
0

= 100 +
45(2 +

√
3)

π
∼ 153, (2)

to the nearest whole number.

1.2 Part b

In like fashion, the average number F of fish that leave the lake per hour over the same 5-hour
period is given by

F =
1

5

∫ 5

0

(
4 + 20.1τ

2
)
dτ ∼ 6.059. (3)

The problem statement givess no instruction to give this answer to the nearest whole number, so
we have given it through the first three decimal digits.
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1.3 Part c

Let F0 be the number of fish in the lake at time t = 0. The number f(t) of fish in the lake at time
t, for 0 ≤ t ≤ 8, is then given by

f(t) = F0 +

∫ t

0

[
16 + 15 sin

πτ

6
− 20.1τ

2
]
dτ (4)

By the Fundamental Theorem of Calculus,

f ′(t) = 16 + 15 sin
πt

6
− 20.1t

2

. (5)

Setting f ′(t) = 0 and solving numerically, we find just one critical point in [0, 8] at t0 ∼ 6.204. The
maximum value of f on [0, 8] occurs at an endpoint of the interval or at a critical point, so it must
therefore be found at one of three points: at t = 0, t = t0, or t = 8. Evaluating, gives

f(0) = F0; (6)

f(t0) ∼ F0 + 135.015; (7)

f(8) = F0 + 80.920. (8)

We conclude that the number of fish in the lake is greatest when t = t0 ∼ 6.204.

1.4 Part d

As we have seen in Part c of this problem, the rate of change of the number of fish in the lake
during the relevant interval is

f ′(t) = 16 + 15 sin
πt

6
− 20.1t

2

. (9)

Thus,

f ′′(t) =
5π

2
cos

πt

6
− 20.1t

2

5
t ln 2. (10)

So f ′′(5) ∼ −10.723, and the rate of change of the number of fish in the lake is decreasing at about
the rate of 10.723 fish per hour per hour.

2 Problem 2

2.1 Part a

The function vP is given differentiable, presumably on some interval containing the interval (0, 4),
although this isn’t stated. Consequently vP is differentiable on the interval (0.3, 2.8) and continuous
on the interval [0.3, 2.8]. It is also given that vP (0.3) = vP (2.8) = 55. The Mean Value Theorem
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applies to guarantee the existence of a point ξ in (0.3, 2.8) such that v′P , which is the acceleration
of the particle P satisfies

2.5 v′P (ξ) = v′P (ξ)(2.8− 0.3) = [vP (2.8)− vP (0.3)] = 55− 55 = 0. (11)

It is immediate from this that v′P (ξ) = 0.

Note that it is also possible to solve this problem by appealing to Rolle’s Theorem instead of to the
Mean Value Theorem.

2.2 Part b

The trapezoidal rule with the subintervals [0, 0.3], [0.3, 1.7], and [1.7, 2.8] gives∫ 2.8

0

vP (t) dt ∼ 1

2

[
(55 + 0)(0.3− 0) + (−29 + 55)(1.7− 0.3) + (55− 29)(2.8− 1.7)

]
(12)

∼ 40.75. (13)

2.3 Part c

We are to find the subinterval of [0, 4] for which vQ(t) ≥ 60, where

vQ(t) = 45
√
t cos(0.063t2), (14)

so we must solve the inequality

60 ≤ 45
√
t cos(0.063t2), or, equivalently, (15)

4

3
≤
√
t cos(0.063t2). (16)

Examination of a graph indicates that there is two instances of equality in [0, 4], and that the
solution consists of the interval whose endpoints are those two values. Solving numerically, we find
that the desired interval is, approximately, [1.866, 3.519]. If SQ is the distance this particle travels
during this interval, then

SQ ∼
∫ 3.510

1.866

|vQ(t)| dt (17)

∼
∫ 3.510

1.866

45
√
t cos(0.063t2) dt ∼ 135.938 meters. (18)

2.4 Part d

The integral of part (c) gives the displacement of the particle P at time t = 2.8, while the displace-
ment of particle Q at that time is given by

−90 +

∫ 2.8

0

vQ(t) dt ∼ 73.067 meters. (19)
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The distance between the two particles at time t = 2.8 is the magnitude of the difference between
these two displacements, or about 95.188 meters.

3 Problem 3

From what is given about the function f , we easily write

f(x) =



−x− 1, −2 ≤ x ≤ 0;

2x− 1, 0 ≤ x ≤ 2;

3−
√

9− (x− 5)2, 2 ≤ x ≤ 5.

(20)

It is also given that the domain of f is the interval [−6, 5] and that f is continuous on that
interval.

3.1 Part a

From the properties of the definite integral, we know that∫ −2
−6

f(x) dx =

∫ 5

−6
f(x) dx−

∫ 5

−2
f(x) dx. (21)

But it is given that ∫ 5

−6
f(x) dx = 7. (22)

We have ∫ 5

−2
f(x) dx =

∫ 0

−2
f(x) dx+

∫ 2

0

f(x) dx+

∫ 5

2

f(x) dx (23)

= 0 + 2 +

(
9− 9

4
π

)
= 11− 9

4
π. (24)

We can carry out the integrations of (23) by using (20), or we can carry them out by using the
geometry of the graph to find the areas of several triangles, a square, and a quarter-circle.

Finally, ∫ −2
−6

f(x) dx =

∫ 5

−6
f(x) dx−

∫ 5

−2
f(x) dxdx (25)

= 7−
(

11− 9

4
π

)
=

9

4
π − 4. (26)
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3.2 Part b

We have ∫ 5

3

[2f ′(x) + 4] dx = 2

∫ 5

3

f ′(x) dx+ 4

∫ 5

3

dx (27)

= 2 [f(5)− f(3)] + 4(5− 3) (28)

= 2
[
0−

(
3−
√

5
)]

+ 8 = 2 + 2
√

5. (29)

3.3 Part c

The function g(x) =

∫ x

−2
f(t) dt gives the signed area between the curve y = f(t) and the t-axis on

the interval [−2, x]. It is visually evident that the area between the curve and the horizontal axis
on the interval [−2,−1] is a small positive number (in fact, it is 1/2), the area between the curve
and the horizontal axis on the interval [−1, 1/2] is a negative number of small magnitude (in fact,
it is −3/4), and the area between the curve and the horizontal axis on the interval [−1/2, 5] is a
positive number substantially larger than either of the other two magnitudes. So g(x) increases on
the interval [−2,−1] from 0 to g(−2) = 0 to g(−1) = 1/2. On the interval [−1, 1/2], the value g(x)
decreases from g(−1) = 1/2 to g(1/2) = −1/4, and on the interval [1/2, 5] the value g(x) increases
from 1/4 to a relatively large positive number (in fact, to g(5) = 11− 9π/4, as we saw in the course
of our solution to Part a of this problem.) It follows from these considerations that the maximum
value of g on [−2, 5] is g(5) = 11− 9π/4

We are given that f is continuous, so limx→1 f(x) = f(1) = 1. We are given that the graph of f
is a straight line of slope 2 on the interval [0, 2] so f ′(x) ≡ 2 on (0, 2). Hence, limx→1 f

′(x) = 2.
Also, limx→1 10x = 10 and limx→1 arctanx = π/4, because both of these functions are continuous
at x = 1. Where continuous functions are involved, the limit of a difference is the difference of a
limit, and the limit of a quotient is the quotient of the limits (provided the limit in the denominator
is not zero). Thus,

lim
x→1

10x − 3f ′(x)

f(x)− arctanx
=

10− 3 · 2
1− π/4

=
16

4− π
. (30)

4 Problem 4

4.1 Part a

Now h′(t) = −
√
h/10, and V = πr2h = πh (because r is constant), and this means that

dV

dt
=
dV

dh
· dh
dt

(31)

= π ·

(
−
√
h

10

)
cubic feet per second. (32)
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4.2 Part b

We have

d

dt

(
dh

dt

)
= − d

dt

(√
h

10

)
= −

(
1

20
√
h

)
dh

dt
(33)

= −
(

1

20��
√
h

)
·

(
−�

�
√
h

10

)
=

1

200
. (34)

We conclude that h′(t), which is the rate at which the rate of change of h changes, has a positive
derivative at all times, and so is always increasing.

4.3 Part c

Let h(t) designate the solution we seek. We are given that h′(t) = −
√
h(t)/10 along with the initial

conditon h(0) = 5. Hence,

h′(t)√
h(t)

dt = − 1

10
, so (35)∫ t

0

h′(τ)√
h(τ)

dτ = −
∫ t

0

dτ

10
. (36)

We know that h(0) = 5 > 0, so the solution is positive at t = 5. Being differentiable (as a
solution of a differential equation) is must be continuous near t = 5, and so must be positive in
some neighborhood of 5.. Integrating (36) to some value of t where h(t) remains positive, we find
that

2
√
h(t)− 2

√
h(0) = − t

10
, (37)

which, using the initial condition, becomes

√
h(t) =

√
5− t

20
(38)

We can rewrite this as

h(t) = 5−
√

5

10
t+

t2

400
. (39)

5 Problem 5

R denotes the region enclosed by the graphs of g(x) = −2 + 3 cos(πx/2) and h(x) = 6−2(x−1)2 =
4 + 4x− 2x2, the y-axis, and the vertical line x = 2.
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5.1 Part a

The area of the region R is∫ 2

0

[h(x)− g(x)] dx =

∫ 2

0

[
6 + 4x− 2x2 − 3 cos

πx

2

]
dx (40)

=

[
6x+ 2x2 − 2

3
x3 − 6

π
sin

πx

2

] ∣∣∣∣2
0

(41)

=
44

3
. (42)

5.2 Part b

The area of the cross-section at x = t is given as

A(t) =
1

t+ 3
(43)

for x extending from 0 to 2, so the volume in question is

V =

∫ 2

0

A(t) dt =

∫ 2

0

dt

t+ 3
= ln |t+ 3|

∣∣∣∣2
0

= ln
5

3
. (44)

5.3 Part c

The volume, V generated when R is rotated about the line y = 6 is

V = π

∫ 2

0

(
[6− g(x)]

2 − [6− h(x)]
2 )
dx (45)

= π

∫ 2

0

[
9 cos2

πx

2
− 48 cos

πx

2
− 4x4 + 16x3 − 24x2 + 16x+ 60

]
dx (46)

Evaluation of this integral is not required. However it is an elementary integral, and for those who
must know,

V =
677π

5
. (47)

6 Problem 6

6.1 Part a

If the line y = 4 +
2

3
(x − 2), which has slope

2

3
, is tangent to the curve y = h(x) at x = 2, then

h′(2) =
2

3
because h′(2) is the slope of the line tangent to y = h(x) at x = 2. For future reference,
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we note that this tangent line must pass through the point with coordinates
(
2, h(2)

)
. The point

on the line where x = 2 being the point with coordinates (2, 4), we would, if it had not been given,
conclude that h(2) = 4.

6.2 Part b

If a(x) = 3x3h(x), then, by the Chain Rule,

a′(x) = 9x2h(x) + 3x3h′(x), whence (48)

a′(2) = 9 · 22 · 4 + �3 · 23 ·
2

�3
(49)

= 144 + 16 = 160. (50)

(We have used the values of h(2) and h′(2) from Part a.)

6.3 Part c

If it is known that the limit, as x → 2 of
x2 − 4

1− [f(x)]3
can be evaluated using l’Hôpital’s Rule,

then—because x2 − 4 → 0 as x → 2—it must be that 1 − [f(x)]3 → 0 as x → 2; this is because
l’Hôpital’s rule can’t be used unless the limits in numerator and denominator both be zero or both
be infinite. But f is given twice differentiable, so f and f ′ must both be continuous. Consequently,
1− [f(2)]3 = 0, and it follows that f(2) = 1. But, because 2x→ 4, which is neither 0 nor infinite,
(This must be noted in order to ensure that only a single application of l’Hôpital’s rule is needed,
and this fact has not been given.) use of l’Hôpital’s rule also requires—using the continuity of f
and of f ′, that

lim
x→2

2x

3[f(x)]2f ′(x)
=

4

3[f(2)]2f ′(2)
. (51)

This quotient is
4

3 · 1 · f ′(2)
. But, by the continuity of h, which is given, and the fact that h(x)

agrees with the fraction
x2 − 4

1− [f(x)]3
when x 6= 2, we now see that

4 = h(2) =
4

3f ′(2)
, (52)

from which it is immediate that

f ′(2) =
16

3
. (53)

6.4 Part d

The functions g and h are both continuous (both being twice differentiable), and both take on
the value 4 at x = 2. Both, therefore, have 4 as their limiting values when x → 2. But from
g(x) ≤ k(x) ≤ h(x) for 1 < x < 3 it follows that
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1.

4 = g(2) ≤ k(2) ≤ h(2) = 4, or (54)

k(2) = 4, (55)

and that

2.

4 = lim
x→2

g(x) ≤ lim
x→2

k(x) ≤ lim
x→2

h(x) = 4, or (56)

lim
x→2

k(x) = 4. (57)

Hence k(2) = 4 = limx→2 k(x), from which we conclude that k is continuous at x = 2.

(Note: In place of the compound inequality (56), one can apply the “Squeeze Theorem,” which is
also known as the “Sandwich Theorem,” the “Flyswatter Principle,” and, probably, many other
names.)
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