AP Calculus 2019 AB FRQ Solutions

Louis A. Talman, Ph.D.
Emeritus Professor of Mathematics
Metropolitan State University of Denver

May 18, 2019

1 Problem 1

1.1 Part a

Because fish enter the lake at the rate $E(t)=20+15 \sin \frac{\pi t}{6}$, with t in hours after midnight, the number, F, of fish that enter the lake over the 5 -hour period from $t=0$ to $t=5$, is given by

$$
\begin{align*}
F & =\int_{0}^{5} E(t) d t=\int_{0}^{5}\left[20+15 \sin \frac{\pi \tau}{6}\right] d \tau \tag{1}\\
& =\left.\left[20 \tau-90 \cos \frac{\pi \tau}{6}\right]\right|_{0} ^{5}=100+\frac{45(2+\sqrt{3})}{\pi} \sim 153 \tag{2}
\end{align*}
$$

to the nearest whole number.

1.2 Part b

In like fashion, the average number \bar{F} of fish that leave the lake per hour over the same 5 -hour period is given by

$$
\begin{equation*}
\bar{F}=\frac{1}{5} \int_{0}^{5}\left(4+2^{0.1 \tau^{2}}\right) d \tau \sim 6.059 \tag{3}
\end{equation*}
$$

The problem statement givess no instruction to give this answer to the nearest whole number, so we have given it through the first three decimal digits.

1.3 Part c

Let F_{0} be the number of fish in the lake at time $t=0$. The number $f(t)$ of fish in the lake at time t, for $0 \leq t \leq 8$, is then given by

$$
\begin{equation*}
f(t)=F_{0}+\int_{0}^{t}\left[16+15 \sin \frac{\pi \tau}{6}-2^{0.1 \tau^{2}}\right] d \tau \tag{4}
\end{equation*}
$$

By the Fundamental Theorem of Calculus,

$$
\begin{equation*}
f^{\prime}(t)=16+15 \sin \frac{\pi t}{6}-2^{0.1 t^{2}} \tag{5}
\end{equation*}
$$

Setting $f^{\prime}(t)=0$ and solving numerically, we find just one critical point in $[0,8]$ at $t_{0} \sim 6.204$. The maximum value of f on $[0,8]$ occurs at an endpoint of the interval or at a critical point, so it must therefore be found at one of three points: at $t=0, t=t_{0}$, or $t=8$. Evaluating, gives

$$
\begin{align*}
f(0) & =F_{0} \tag{6}\\
f\left(t_{0}\right) & \sim F_{0}+135.015 \tag{7}\\
f(8) & =F_{0}+80.920 \tag{8}
\end{align*}
$$

We conclude that the number of fish in the lake is greatest when $t=t_{0} \sim 6.204$.

1.4 Part d

As we have seen in Part c of this problem, the rate of change of the number of fish in the lake during the relevant interval is

$$
\begin{equation*}
f^{\prime}(t)=16+15 \sin \frac{\pi t}{6}-2^{0.1 t^{2}} \tag{9}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
f^{\prime \prime}(t)=\frac{5 \pi}{2} \cos \frac{\pi t}{6}-\frac{2^{0.1 t^{2}}}{5} t \ln 2 \tag{10}
\end{equation*}
$$

So $f^{\prime \prime}(5) \sim-10.723$, and the rate of change of the number of fish in the lake is decreasing at about the rate of 10.723 fish per hour per hour.

2 Problem 2

2.1 Part a

The function v_{P} is given differentiable, presumably on some interval containing the interval $(0,4)$, although this isn't stated. Consequently v_{P} is differentiable on the interval $(0.3,2.8)$ and continuous on the interval $[0.3,2.8]$. It is also given that $v_{P}(0.3)=v_{P}(2.8)=55$. The Mean Value Theorem
applies to guarantee the existence of a point ξ in $(0.3,2.8)$ such that v_{P}^{\prime}, which is the acceleration of the particle P satisfies

$$
\begin{equation*}
2.5 v_{P}^{\prime}(\xi)=v_{P}^{\prime}(\xi)(2.8-0.3)=\left[v_{P}(2.8)-v_{P}(0.3)\right]=55-55=0 \tag{11}
\end{equation*}
$$

It is immediate from this that $v_{P}^{\prime}(\xi)=0$.
Note that it is also possible to solve this problem by appealing to Rolle's Theorem instead of to the Mean Value Theorem.

2.2 Part b

The trapezoidal rule with the subintervals $[0,0.3],[0.3,1.7]$, and $[1.7,2.8]$ gives

$$
\begin{align*}
\int_{0}^{2.8} v_{P}(t) d t & \sim \frac{1}{2}[(55+0)(0.3-0)+(-29+55)(1.7-0.3)+(55-29)(2.8-1.7)] \tag{12}\\
& \sim 40.75 \tag{13}
\end{align*}
$$

2.3 Part c

We are to find the subinterval of $[0,4]$ for which $v_{Q}(t) \geq 60$, where

$$
\begin{equation*}
v_{Q}(t)=45 \sqrt{t} \cos \left(0.063 t^{2}\right) \tag{14}
\end{equation*}
$$

so we must solve the inequality

$$
\begin{align*}
60 & \leq 45 \sqrt{t} \cos \left(0.063 t^{2}\right), \text { or, equivalently, } \tag{15}\\
\frac{4}{3} & \leq \sqrt{t} \cos \left(0.063 t^{2}\right) \tag{16}
\end{align*}
$$

Examination of a graph indicates that there is two instances of equality in $[0,4]$, and that the solution consists of the interval whose endpoints are those two values. Solving numerically, we find that the desired interval is, approximately, [1.866, 3.519]. If S_{Q} is the distance this particle travels during this interval, then

$$
\begin{align*}
S_{Q} & \sim \int_{1.866}^{3.510}\left|v_{Q}(t)\right| d t \tag{17}\\
& \sim \int_{1.866}^{3.510} 45 \sqrt{t} \cos \left(0.063 t^{2}\right) d t \sim 135.938 \text { meters. } \tag{18}
\end{align*}
$$

2.4 Part d

The integral of part (c) gives the displacement of the particle P at time $t=2.8$, while the displacement of particle Q at that time is given by

$$
\begin{equation*}
-90+\int_{0}^{2.8} v_{Q}(t) d t \sim 73.067 \text { meters } \tag{19}
\end{equation*}
$$

The distance between the two particles at time $t=2.8$ is the magnitude of the difference between these two displacements, or about 95.188 meters.

3 Problem 3

From what is given about the function f, we easily write

$$
f(x)= \begin{cases}-x-1, & -2 \leq x \leq 0 \tag{20}\\ 2 x-1, & 0 \leq x \leq 2 \\ 3-\sqrt{9-(x-5)^{2}}, & 2 \leq x \leq 5\end{cases}
$$

It is also given that the domain of f is the interval $[-6,5]$ and that f is continuous on that interval.

3.1 Part a

From the properties of the definite integral, we know that

$$
\begin{equation*}
\int_{-6}^{-2} f(x) d x=\int_{-6}^{5} f(x) d x-\int_{-2}^{5} f(x) d x \tag{21}
\end{equation*}
$$

But it is given that

$$
\begin{equation*}
\int_{-6}^{5} f(x) d x=7 \tag{22}
\end{equation*}
$$

We have

$$
\begin{align*}
\int_{-2}^{5} f(x) d x & =\int_{-2}^{0} f(x) d x+\int_{0}^{2} f(x) d x+\int_{2}^{5} f(x) d x \tag{23}\\
& =0+2+\left(9-\frac{9}{4} \pi\right)=11-\frac{9}{4} \pi \tag{24}
\end{align*}
$$

We can carry out the integrations of (23) by using (20), or we can carry them out by using the geometry of the graph to find the areas of several triangles, a square, and a quarter-circle.

Finally,

$$
\begin{align*}
\int_{-6}^{-2} f(x) d x & =\int_{-6}^{5} f(x) d x-\int_{-2}^{5} f(x) d x d x \tag{25}\\
& =7-\left(11-\frac{9}{4} \pi\right)=\frac{9}{4} \pi-4 \tag{26}
\end{align*}
$$

3.2 Part b

We have

$$
\begin{align*}
\int_{3}^{5}\left[2 f^{\prime}(x)+4\right] d x & =2 \int_{3}^{5} f^{\prime}(x) d x+4 \int_{3}^{5} d x \tag{27}\\
& =2[f(5)-f(3)]+4(5-3) \tag{28}\\
& =2[0-(3-\sqrt{5})]+8=2+2 \sqrt{5} . \tag{29}
\end{align*}
$$

3.3 Part c

The function $g(x)=\int_{-2}^{x} f(t) d t$ gives the signed area between the curve $y=f(t)$ and the t-axis on the interval $[-2, x]$. It is visually evident that the area between the curve and the horizontal axis on the interval $[-2,-1]$ is a small positive number (in fact, it is $1 / 2$), the area between the curve and the horizontal axis on the interval $[-1,1 / 2]$ is a negative number of small magnitude (in fact, it is $-3 / 4$), and the area between the curve and the horizontal axis on the interval $[-1 / 2,5]$ is a positive number substantially larger than either of the other two magnitudes. So $g(x)$ increases on the interval $[-2,-1]$ from 0 to $g(-2)=0$ to $g(-1)=1 / 2$. On the interval $[-1,1 / 2]$, the value $g(x)$ decreases from $g(-1)=1 / 2$ to $g(1 / 2)=-1 / 4$, and on the interval $[1 / 2,5]$ the value $g(x)$ increases from $1 / 4$ to a relatively large positive number (in fact, to $g(5)=11-9 \pi / 4$, as we saw in the course of our solution to Part a of this problem.) It follows from these considerations that the maximum value of g on $[-2,5]$ is $g(5)=11-9 \pi / 4$
We are given that f is continuous, so $\lim _{x \rightarrow 1} f(x)=f(1)=1$. We are given that the graph of f is a straight line of slope 2 on the interval $[0,2]$ so $f^{\prime}(x) \equiv 2$ on $(0,2)$. Hence, $\lim _{x \rightarrow 1} f^{\prime}(x)=2$. Also, $\lim _{x \rightarrow 1} 10^{x}=10$ and $\lim _{x \rightarrow 1} \arctan x=\pi / 4$, because both of these functions are continuous at $x=1$. Where continuous functions are involved, the limit of a difference is the difference of a limit, and the limit of a quotient is the quotient of the limits (provided the limit in the denominator is not zero). Thus,

$$
\begin{equation*}
\lim _{x \rightarrow 1} \frac{10^{x}-3 f^{\prime}(x)}{f(x)-\arctan x}=\frac{10-3 \cdot 2}{1-\pi / 4}=\frac{16}{4-\pi} . \tag{30}
\end{equation*}
$$

4 Problem 4

4.1 Part a

Now $h^{\prime}(t)=-\sqrt{h} / 10$, and $V=\pi r^{2} h=\pi h$ (because r is constant), and this means that

$$
\begin{align*}
\frac{d V}{d t} & =\frac{d V}{d h} \cdot \frac{d h}{d t} \tag{31}\\
& =\pi \cdot\left(-\frac{\sqrt{h}}{10}\right) \text { cubic feet per second. } \tag{32}
\end{align*}
$$

4.2 Part b

We have

$$
\begin{align*}
\frac{d}{d t}\left(\frac{d h}{d t}\right) & =-\frac{d}{d t}\left(\frac{\sqrt{h}}{10}\right)=-\left(\frac{1}{20 \sqrt{h}}\right) \frac{d h}{d t} \tag{33}\\
& =-\left(\frac{1}{20 \sqrt{h}}\right) \cdot\left(-\frac{\sqrt{h}}{10}\right)=\frac{1}{200} \tag{34}
\end{align*}
$$

We conclude that $h^{\prime}(t)$, which is the rate at which the rate of change of h changes, has a positive derivative at all times, and so is always increasing.

4.3 Part c

Let $h(t)$ designate the solution we seek. We are given that $h^{\prime}(t)=-\sqrt{h(t)} / 10$ along with the initial conditon $h(0)=5$. Hence,

$$
\begin{align*}
\frac{h^{\prime}(t)}{\sqrt{h(t)}} d t & =-\frac{1}{10}, \text { so } \tag{35}\\
\int_{0}^{t} \frac{h^{\prime}(\tau)}{\sqrt{h(\tau)}} d \tau & =-\int_{0}^{t} \frac{d \tau}{10} . \tag{36}
\end{align*}
$$

We know that $h(0)=5>0$, so the solution is positive at $t=5$. Being differentiable (as a solution of a differential equation) is must be continuous near $t=5$, and so must be positive in some neighborhood of 5 .. Integrating (36) to some value of t where $h(t)$ remains positive, we find that

$$
\begin{equation*}
2 \sqrt{h(t)}-2 \sqrt{h(0)}=-\frac{t}{10} \tag{37}
\end{equation*}
$$

which, using the initial condition, becomes

$$
\begin{equation*}
\sqrt{h(t)}=\sqrt{5}-\frac{t}{20} \tag{38}
\end{equation*}
$$

We can rewrite this as

$$
\begin{equation*}
h(t)=5-\frac{\sqrt{5}}{10} t+\frac{t^{2}}{400} \tag{39}
\end{equation*}
$$

5 Problem 5

R denotes the region enclosed by the graphs of $g(x)=-2+3 \cos (\pi x / 2)$ and $h(x)=6-2(x-1)^{2}=$ $4+4 x-2 x^{2}$, the y-axis, and the vertical line $x=2$.

5.1 Part a

The area of the region R is

$$
\begin{align*}
\int_{0}^{2}[h(x)-g(x)] d x & =\int_{0}^{2}\left[6+4 x-2 x^{2}-3 \cos \frac{\pi x}{2}\right] d x \tag{40}\\
& =\left.\left[6 x+2 x^{2}-\frac{2}{3} x^{3}-\frac{6}{\pi} \sin \frac{\pi x}{2}\right]\right|_{0} ^{2} \tag{41}\\
& =\frac{44}{3} \tag{42}
\end{align*}
$$

5.2 Part b

The area of the cross-section at $x=t$ is given as

$$
\begin{equation*}
A(t)=\frac{1}{t+3} \tag{43}
\end{equation*}
$$

for x extending from 0 to 2 , so the volume in question is

$$
\begin{equation*}
V=\int_{0}^{2} A(t) d t=\int_{0}^{2} \frac{d t}{t+3}=\left.\ln |t+3|\right|_{0} ^{2}=\ln \frac{5}{3} \tag{44}
\end{equation*}
$$

5.3 Part c

The volume, V generated when R is rotated about the line $y=6$ is

$$
\begin{align*}
V & =\pi \int_{0}^{2}\left([6-g(x)]^{2}-[6-h(x)]^{2}\right) d x \tag{45}\\
& =\pi \int_{0}^{2}\left[9 \cos ^{2} \frac{\pi x}{2}-48 \cos \frac{\pi x}{2}-4 x^{4}+16 x^{3}-24 x^{2}+16 x+60\right] d x \tag{46}
\end{align*}
$$

Evaluation of this integral is not required. However it is an elementary integral, and for those who must know,

$$
\begin{equation*}
V=\frac{677 \pi}{5} \tag{47}
\end{equation*}
$$

6 Problem 6

6.1 Part a

If the line $y=4+\frac{2}{3}(x-2)$, which has slope $\frac{2}{3}$, is tangent to the curve $y=h(x)$ at $x=2$, then $h^{\prime}(2)=\frac{2}{3}$ because $h^{\prime}(2)$ is the slope of the line tangent to $y=h(x)$ at $x=2$. For future reference,
we note that this tangent line must pass through the point with coordinates $(2, h(2))$. The point on the line where $x=2$ being the point with coordinates $(2,4)$, we would, if it had not been given, conclude that $h(2)=4$.

6.2 Part b

If $a(x)=3 x^{3} h(x)$, then, by the Chain Rule,

$$
\begin{align*}
a^{\prime}(x) & =9 x^{2} h(x)+3 x^{3} h^{\prime}(x), \text { whence } \tag{48}\\
a^{\prime}(2) & =9 \cdot 2^{2} \cdot 4+\not \beta \cdot 2^{3} \cdot \frac{2}{\not \supset} \tag{49}\\
& =144+16=160 \tag{50}
\end{align*}
$$

(We have used the values of $h(2)$ and $h^{\prime}(2)$ from Part a.)

6.3 Part c

If it is known that the limit, as $x \rightarrow 2$ of $\frac{x^{2}-4}{1-[f(x)]^{3}}$ can be evaluated using l'Hôpital's Rule, then-because $x^{2}-4 \rightarrow 0$ as $x \rightarrow 2$-it must be that $1-[f(x)]^{3} \rightarrow 0$ as $x \rightarrow 2$; this is because l'Hôpital's rule can't be used unless the limits in numerator and denominator both be zero or both be infinite. But f is given twice differentiable, so f and f^{\prime} must both be continuous. Consequently, $1-[f(2)]^{3}=0$, and it follows that $f(2)=1$. But, because $2 x \rightarrow 4$, which is neither 0 nor infinite, (This must be noted in order to ensure that only a single application of l'Hôpital's rule is needed, and this fact has not been given.) use of l'Hôpital's rule also requires-using the continuity of f and of f^{\prime}, that

$$
\begin{equation*}
\lim _{x \rightarrow 2} \frac{2 x}{3[f(x)]^{2} f^{\prime}(x)}=\frac{4}{3[f(2)]^{2} f^{\prime}(2)} \tag{51}
\end{equation*}
$$

This quotient is $\frac{4}{3 \cdot 1 \cdot f^{\prime}(2)}$. But, by the continuity of h, which is given, and the fact that $h(x)$ agrees with the fraction $\frac{x^{2}-4}{1-[f(x)]^{3}}$ when $x \neq 2$, we now see that

$$
\begin{equation*}
4=h(2)=\frac{4}{3 f^{\prime}(2)} \tag{52}
\end{equation*}
$$

from which it is immediate that

$$
\begin{equation*}
f^{\prime}(2)=\frac{16}{3} \tag{53}
\end{equation*}
$$

6.4 Part d

The functions g and h are both continuous (both being twice differentiable), and both take on the value 4 at $x=2$. Both, therefore, have 4 as their limiting values when $x \rightarrow 2$. But from $g(x) \leq k(x) \leq h(x)$ for $1<x<3$ it follows that
1.

$$
\begin{align*}
4=g(2) & \leq k(2) \leq h(2)=4, \text { or } \tag{54}\\
k(2) & =4 \tag{55}
\end{align*}
$$

and that
2.

$$
\begin{align*}
4= & \lim _{x \rightarrow 2} g(x) \leq \lim _{x \rightarrow 2} k(x) \leq \lim _{x \rightarrow 2} h(x)=4, \text { or } \tag{56}\\
& \lim _{x \rightarrow 2} k(x)=4 \tag{57}
\end{align*}
$$

Hence $k(2)=4=\lim _{x \rightarrow 2} k(x)$, from which we conclude that k is continuous at $x=2$.
(Note: In place of the compound inequality (56), one can apply the "Squeeze Theorem," which is also known as the "Sandwich Theorem," the "Flyswatter Principle," and, probably, many other names.)

