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1. Solution: We begin by writing r0 = 0, r1 = 1, r2 = 2, r3 = 2.5, and r4 = 4.

(a) To approximate f ′(2.25) from the given data, we write

f ′(2.25) ∼ f(2.5)− f(2.0)

2.5− 2.0
=

10− 6

2.5− 2.0
=

4

0.5
= 8. (1)

Thus, f(2.25) ∼ 8 mg/cm3. This means that as we move directly outward from
the center of the Petri dish, the density of bacteria is increasing at about the per-
centimeter-rate of 8 milligrams per square centimeter at a point 2.25 centimeters
from the center.

(b) The required right Riemann sum tp approximate 2π

∫ 4

0
rf(r) dr is

2π

4∑
k=1

rkf(rk)(rk − rk−1) = 2π (1 · 2 · 1 + 2 · 6 · 1 + 2.5 · 10 · 0.5 + 4 · 18 · 1.5) mg.

(2)

This is 269π mg.

(c) It is given that f is an increasing function. It follows that for any integer
k = 1, 2, 3, 4 and rk−1 ≤ r < rk, then rf(r) < rf(rk) < rkf(rk). Hence, for all
such k, we must have∫ rk

rk−1

rf(r) dr <

∫ rk

rk−1

rkf(rk) dr < rkf(rk)(rk − rk−1). (3)

We now see that∫ 4

0
rf(r) dr =

4∑
k=1

∫ rk

rk−1

rf(r) dr <

4∑
k=1

rkf(rk)(rk − rk−1). (4)

The right Riemann sum is therefore an overestimate for the corresponding inte-
gral.
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(d) The average value of g on [1, 4] is

2π

4

∫ 4

1
g(r) dr = π

∫ 4

1

[
1− 8 cos3(1.57

√
r)
]
dr. (5)

Carrying out a numerical integration, we find that the required average value is
about 44.186 milligrams per square centimeter.

2. Solution:

(a) By the Fundamental Theorem of Calculus, the positions xP (t) and xQ(t) of,
respectively, particles P and Q at time t are given by

xP (t) = xP (0) +

∫ t

0
vP (τ) dτ (6)

= 5 +

∫ t

0
sin τ1.5 dτ (7)

and

xQ(t) = xQ(0) +

∫ t

0
vQ(τ) dτ (8)

= 10 +

∫ t

0

[
(τ − 1.8) + 1.25τ

]
dτ (9)

Integrating numerically with t = 1 gives xP (1) ∼ 5.371 and xQ(1) ∼ 9.820.

(b) The distance D(t) between P and Q at time t is

D(t) =
∣∣xQ(t)− xP (t)

∣∣, (10)

which is always non-negative. Moreover,[
D(t)

]2
=
[
xQ(t)− xP (t)

]2
. (11)

Therefore,

2D(t)D′(t) = 2
[
xQ(t)− xP (t)

] [
x′Q(t)− x′P (t)

]
, (12)

Thus,

D(1)D′(1) =
[
xQ(1)− xP (1)

]
[vQ(1)− vP (1)] . (13)
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Now, from our calculations in part (a),

xQ(1)− xP (1) ∼ 9.82036− 5.37066 ∼ 4.450, (14)

while

vQ(1)− vP (1) ∼ [(1− 1.8) + 1.251]− sin 1 ∼ 0.45000− 0.84147 ∼ −0.391
(15)

Now D(1) > 0, and it follows from (12) and the definitions of xP , xQ, and D that
D′ is a continuous function whereever D does not vanish. So from (13) and what
we have just seen, we conclude that D is a decreasing function in the vicinity
of t = 1 because its derivative is negative there and functions whose derivatives
are negative on an interval must be decreasing on that interval. When t = 1,
the two particles are moving toward from each other.

(c) The acceleration of particle Q is v′Q(t) = 1+1.25t ln 1.25. Thus, the acceleration
of particle Q is v′Q(1) ∼ 1.279. The speed, sQ(t) of particle Q at time t is |vQ(t)|,
which is a non-negative quantity that satisfies[

sQ(t)
]2

= [vQ(t)]2, (16)

whence

2sQ(t)s′Q(t) = 2vQ(t)v′Q(t). (17)

It follows that, wherever speed does not vanish, the sign of s′Q(t) is the same as
that of vQ(t)v′Q(t). Now vQ(1)v′Q(1) ∼ (0.450)(1.279) > 0, so speed is increasing
near t = 1.

(d) The total distance traveled by particle P during the time interval 0 ≤ t ≤ π is∫ π

0
|vP (τ)| dτ =

∫ π

0
sin τ1.5 dτ (18)

Integrating numerically, we find that the distance is approximately 0.515.

3. Solution:

(a) The area in the first quadrant bounded by the x-axis and the curve y =
6x
√

4− x2 is

3

∫ 2

0

√
4− x2 · 2x dx = −2(4− x2)3/2

∣∣∣∣2
0

= −0 + 16 = 16 in2 (19)

3



(b) If y is as above, y′ =
c(4− 2x2)√

4− x2
and y′ = 0 for 0 ≤ x ≤ 2, then x =

√
2. We are

given c > 0, so because y = 0 when x = 0 or x = 2 and y > 0 when 0 < x < 2, we
see that y assumes its absolute minimum on [0, 2] at the endpoints. Applying
the Extreme Value Theorem y, which depends continuously on x throughout
the closed, bounded interval [0, 2], must have an absolute maximum somewhere
interior to that interval. By Fermat’s Theorem that maximum must occur at
a value of x where y′ = 0. There being only one such value, it must yield
the maximum. Because y gives, for each x, the radius of the corresponding
cross-sectional slice, we conclude that

1.2 = c
√

2

√
4− (

√
2)2 = 2c. (20)

It follows that c = 0.6

(c) The volume of the spinning toy generated by the curve y = cx
√

4− x2 is

c2π

∫ 2

0
x2(4− x2) dx = c2π

∫ 2

0
(4x2 − x4) dx (21)

= c2π

(
4
x3

3
− x5

5

) ∣∣∣∣2
0

= c2π

(
32

3
− 32

5

)
=

64

15
c2π. (22)

If this is to be 2π, we must have c =

√
30

8
.

4. Solution:

(a) If G(x) =

∫ x

0
f(t) dt, then, according to the Fundamental Theorem of Calculus,

G′(x) = f(x). Now G is concave upward on those open intervals where G′(x) =
f(x) is increasing. Because we see from its graph that f is increasing on [−4,−2]
and on [2, 6], we conclude that G is concave upward on (−4,−2) and on (2, 6).

(b) If P (x) = G(x) · f(x), then

P ′(x) = G′(x) · f(x) +G(x) · f ′(x), (23)

so

P ′(3) = G′(3) · f(3) +G(3) · f ′(3) (24)

= f(3) · f(3) +G(3) · f ′(3). (25)

Now

f(3) = −3, (26)

f ′(3) =
f(6)− f(2)

6− 2
=

0− (−4)

6− 2
= 1, (27)
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and

G(3) =
f(0) + f(2)

2
· 2 +

f(2) + f(3)

2
· 1 (28)

=
4 + (−4)

�2
· �2 +

−4 + (−3)

2
· 1 = −7

2
(29)

so

P ′(3) = (−3)2 + 1 ·
(
−7

2

)
(30)

=
11

2
. (31)

(c) Now

G(2) =

∫ 2

0
f(t) dt =

f(0) + f(2)

�2
· �2 = 4 + (−4) = 0, (32)

and G, by the Fundamental Theorem of Calculus, is continuous. This means
that lim

x→2
G(x) = G(2) = 0. Also, lim

x→2
(x2 − 2x) = 4 − 4 = 0, so we may apply

l’Hôpital’s rule to obtain

lim
x→2

G(x)

x2 − 2x
= lim

x→2

f(x)

2x− 2
, (33)

provided that the latter limit exists. But from the graph, we see that lim
x→2

f(x) =

−4. Hence, the limit on the right side of (33) exists and is −4/2 = −2. We
conclude, by l’Hôpital’s rule, that

lim
x→2

G(x)

x2 − 2x
= −2. (34)

(d) The average value, A, of the rate of change of G on the interval [−2, 4] is given
by

A =
1

4− (−2)

∫ 4

−2
G′(t) dt (35)

=
1

6

∫ 4

−2
f(t) dt (36)

=
1

6

∫ 0

−2
f(t) dt+

1

6

∫ 4

0
f(t) dt (37)

=
1

12

[
f(−2) + f(0)

]
· 2 +

1

12

[
f(0) + f(2)

]
· 2 +

1

12

[
f(2) + f(4)

]
· 2 (38)

=
6 + 4

6
+

4− 4

6
+
−4 + (−2)

6
=

2

3
. (39)
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(The trapezoidal integration is justified by the fact that f is piecewise linear
and the appropriate choice of points within the interval of integration.)

(e) The function G is, by the Fundamental Theorem of Calculus, continuous on the
interval [−2, 4] and differentiable on the interval (−2.4); moreover, G′(x) = f(x)
for −2 < x < 4. The Mean Value Theorem therefore guarantees the existence
of ξ ∈ (−2, 4) such that

f(ξ) = G′(ξ) =
G(4)−G(−2)

4− (−2)
=

1

6
[G(4)−G(−2)] . (40)

But then by the definition of G

G′(ξ) =
1

6

[ ∫ 4

0
f(t) dt−

∫ −2
0

f(t) dt

]
(41)

=
1

6

[ ∫ 0

−2
f(t) dt+

∫ 4

0
f(t) dt

]
=

1

6

∫ 4

−2
f(t) dt (42)

According to (36), this is just A, so the answer is “Yes, the Mean Value Theorem
guarantees a value ξ, −4 < ξ < 2, for which G′(ξ) is the average rate of change
of G on [−4, 2].”

Remark: It isn’t at all difficult—though it is a bit tedious—by reading the given
graph, to write an explicit piecewise representation of the function f , and, thereby,
of the function G.

The function f is given by

f(t) =


3(t+ 4) = 3t+ 12; −4 ≤ f < −2

6− (t+ 2) = −t+ 4; −2 ≤ t < 0

4− 4t = −4t+ 4; 0 ≤ t < 2

−4 + (t− 2) = t− 6; 2 ≤ t < 6.

(43)

Carrying out the necessary integrations, we find that

(44)

G(x) =


3
2x

2 + 12x+ 8; −4 ≤ t < −2

−1
2x

2 + 4x; −2 ≤ x < 0

−2x2 + 4x; 0 ≤ x < 2
1
2x

2 − 6x+ 10; 2 ≤ x ≤ 6.

(45)

5. Solution:
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(a) Beginning with the equation

2y2 − 6 = y sinx, (46)

we differentiate both sides with respect to y, while treating y as a function of
x, to see that

4y
dy

dx
= sinx · dy

dx
+ y cosx, or (47)

dy

dx
=

y cosx

4y − sinx
. (48)

(b) Putting x = 0 and y =
√

3 in (48), we obtain

dy

dx

∣∣∣∣
(0,
√
3)

=

√
3 cos 0

4
√

3− sin 0
=

1

4
(49)

An equation for the line tangent to a differentiable curve y = f(x) at the point
(x0, y0) is y = y0 + f ′(x0)(x− x0), so an equation for tangent line to this curve
at (0,

√
3) is

y =
√

3 +
1

4
x. (50)

(c) The tangent line is horizontal at just those points where the derivative vanishes.
From (48), we see that this can be so only when y = 0 or when, because
0 ≤ x ≤ π, x = π/2. But if y = 0, then (46) requires that −6 = 0, which is
not so. Also from (46), we see that we can have x = π/2 and y > 0 only when
y =
√

3. We conclude that the only horizontal tangent line to the curve given
by (46) occurs at the point with coordinates (π/2,

√
3).

(d) When y is near
√

3 and x is near π/2, sinx is near 1 and so substantially smaller
than 4y, which is near 4

√
3. Thus the denominator of (48) is positive. On the

other hand, cosx is positive for values of x just to the left of π/2, but negative
for values of x just to the right of π/2. Because y remains positive throughout
this region, the numerator of (48) changes sign from positive to negative as
we pass from left to right along the curve through the point (π/2,

√
3). We

conclude, that y′ changes sign from positive to negative at (π/2,
√

3). By the
first derivative test. f has a relative maximum at that point.

Remark: The second derivative test is certainly applicable here. But comput-
ing the requred second derivative promises to lead to a time-consuming calcu-
lation, and the first derivative test seems indicated.
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6. Solution:

(a) Here is a plot of the solution to the intial value problem 3y′ = 12 − y with
y(0) = 0, shown on the slope field for the equation.
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Figure 1: Solution plot for the IVP 3y′ = 12− y; y(0) = 0.

(b) In the context of this problem, the statement “ lim
t−>∞

A(t) = 12” means that the

amount of the medication in the patient gets very close to 12 milligrams as time
goes on, and that if we are willing to wait long enough, that amount will get
abitrarily close to 12 milligrams.

(c) Let y = ϕ(t) denote the amount of medication in the patient’s bloodstream when
t hours have passed since administration. We are given that, at any time τ , we
have 3ϕ′(τ) = 12− ϕ(τ). Because ϕ is the solution to a differential equation, it
is continuous and differentiable. Because ϕ(0) = 0, we know that ϕ(τ)− 12 6= 0
in some interval immediately to the right of τ = 0. We may, at least in that
interval, write

ϕ′(τ)

12− ϕ(τ)
=

1

3
. (51)
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Integrating both sides with respect to τ from τ = 0 to τ = t, where we be sure
to choose t > 0 sufficiently close to τ = 0 that we can be sure that our division
was legitimate, we write, ∫ t

0

ϕ′(τ) dτ

12− ϕ(τ)
=

1

3

∫ t

0
dτ ; (52)

The integral on the right is just 1
3 t. We make the substitution u = ϕ(τ) in the

integral on the left. This requires that we also substitute du = ϕ′(τ) dτ , and
that we replace the lower limit, 0, of integration with ϕ(0) = 0, the upper limit
with ϕ(t). Thus, reversing signs across the equality for convenience,∫ y

0

du

u− 12
= − t

3
, or (53)

ln |u− 12|
∣∣∣∣y
0

= − t
3
. (54)

This is equivalent to

ln |y − 12| − ln 12 = − t
3

; (55)

ln |y − 12| = − t
3

+ ln 12; (56)

|y − 12| = 12e−t/3. (57)

But in the region where we have carried out the integration, y is close to zero,
so y − 12 < 0. Hence, we may write

12− y = 12e−t/3. (58)

Thus, our desired solution is given by

y = 12
(

1− e−t/3
)
. (59)

(d) If
dy

dt
= 3− y

t+ 2
and y = 2.5 when t = 1, then

dy

dt

∣∣∣∣
t=1

=
2.5

1 + 2
> 0. (60)

In view of this, we conclude that the amount of medication in the patient is
increasing near the time t = 1.
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